run takes too long!
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
arian hoseini
el 21 de En. de 2023
Comentada: arian hoseini
el 21 de En. de 2023
i have this code that it runs and answers are correct but it takes so long...why?is there any solution?
clc
clear;
% percent of the relay failure rate
SE=[0.99 0.9 0.8 0.5 0];
ME=[0 0 0 0 0];
eta=0.1;
for k=1:5
syms Tc
% permanent fault (lpf)
l1=2/8760;
% temporary faults (ltf)
l2=15/8760;
% relay failure (lp)
l3=0.01/8760;
% mal-trip failure rate (lext)
l4=0.00001/8760;
% reclosing switching rate (lrct)
l5=10800;
% main switching rate (lmct)
l6=30857.14;
% back-up switching rate (lbct)
l7=8640;
% relay instantaneous mal-trip (lrt-op)
l8=0.001/Tc;
% common cause failure rate of C and P (lcp)
l9=0.000001;
% manual switching rate to restore C (litc)
l10=0.5;
% manual switching rate to restore X (litx)
l11=0.5;
% failure rate of self-cheking system (lsc)
l12=0.002/8760;
% failure rato of monitoring circuit (lmn)
% l13=0.0005/8760;
% routine inseption rates (lrt)
l19=1/Tc;
% number of relay tested by self-cheking (msc)
m1=720;
% number of relay tested by inspected routine test (mrt)
m2=1;
% repair rates (mp)
m3=1;
% repaire rate of C (mc)
m4=1;
% portion of relay failure rate by self-cheking (lpsc)
l14=(1-eta)*l3*SE(k);
% portion of relay failure rate by monitoring (lpmn)
l15=0.0005/8760;
% portion of relay failure rate not detected (lprt)
l16=((1-eta)*l3*(1-SE(k)-ME(k)));
% portion of relay potential mal-trip failure rate (lpt-sc)
l17=eta*l3*SE(k);
% portion of relay potential mal-trip failure rate (lpt-rt)
l18=eta*l3*(1-SE(k)-ME(k));
A(1,1)=1-(l19+l1+l2+l12+l16+l14+l15+l18+l17+l4+l9);
A(1,2)=l1;A(1,4)=l2;A(1,6)=l12;A(1,7)=l19;A(1,8)=l16;A(1,9)=l14;A(1,10)=l15;
A(1,11)=l18;A(1,12)=l17;A(1,13)=l4;A(1,15)=l9;
A(2,2)=1-l6;
A(2,3)=l6;
A(3,3)=1-(l3+m4);
A(3,1)=m4;
A(3,17)=l3;
A(4,4)=1-l6;
A(4,5)=l6;
A(5,5)=1-l5;
A(5,1)=l5;
A(6,6)=1-(l1+l2+m1);
A(6,1)=m1;A(6,15)=(l1+l2);
A(7,7)=1-(m2+l1+l8);
A(7,1)=m2;A(7,13)=l8;A(7,15)=l1;
A(8,8)=1-(l19+l1);
A(8,10)=l19;A(8,15)=l1;
A(9,9)=1-(l12+l1+l2);
A(9,10)=l12;A(9,15)=l1+l2;
A(10,10)=1-(l1+l2+m3);
A(10,1)=m3;A(10,15)=l1+l2;
A(11,11)=1-(l19+l1+l3);
A(11,10)=l19;A(11,13)=l3;A(11,15)=l1;
A(12,12)=1-(l12+l3+l1+l2);
A(12,10)=l12;A(12,13)=l3;A(12,15)=l1+l2;
A(13,13)=1-l6;
A(13,14)=l6;
A(14,14)=1-(l10+l10);
A(14,1)=l10;A(14,10)=l10;
A(15,15)=1-l7;
A(15,16)=l7;
A(16,16)=1-l11;
A(16,17)=l11;
A(17,17)=1-(m3+m4);
A(17,3)=m3;A(17,10)=m4;
A(17,:)=1;
B=[0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1];
% format long
P=inv(A)*B;
% R=VPA(P);
% disp(P)
% disp('P1=')
% disp(P(1,1))
% disp('P2=')
% disp(P(2,1))
% disp('P3=')
% disp(P(3,1))
% disp('P4=')
% disp(P(4,1))
% disp('P5=')
% disp(P(5,1))
% disp('P6=')
% disp(P(6,1))
% disp('P7=')
% disp(P(7,1))
% disp('P8=')
% disp(P(8,1))
% disp('P9=')
% disp(P(9,1))
% disp('P10=')
% disp(P(10,1))
% disp('P11=')
% disp(P(11,1))
% disp('P12=')
% disp(P(12,1))
% disp('P13=')
% disp(P(13,1))
% disp('P14=')
% disp(P(14,1))
% disp('P15=')
% disp(P(15,1))
% disp('P16=')
% disp(P(16,1))
% disp('P17=')
% disp(P(17,1))
PI(k)=P(1);
PII(k)=P(2,1)+P(3,1)+P(4,1)+P(5,1);
PIII(k)=P(6,1)+P(7,1)+P(8,1)+P(9,1)+P(10,1)+P(11,1)+P(12,1);
PIV(k)=P(15,1)+P(16,1)+P(17,1);
PV(k)=P(13,1)+P(14,1);
% PI=double(PI);
end
for c=1:1:500
%%
% Pi1(c)=subs(PI(1),Tc,c);
% Pi1(c)=double(Pi1(c));
%
% Pi2(c)=subs(PI(2),Tc,c);
% Pi2(c)=double(Pi2(c));
%
% Pi3(c)=subs(PI(3),Tc,c);
% Pi3(c)=double(Pi3(c));
%
% Pi4(c)=subs(PI(4),Tc,c);
% Pi4(c)=double(Pi4(c));
%
% Pi5(c)=subs(PI(5),Tc,c);
% Pi5(c)=double(Pi5(c));
%%
Piii1(c)=subs(PIII(1),Tc,c);
Piii1(c)=double(Piii1(c));
Piii2(c)=subs(PIII(2),Tc,c);
Piii2(c)=double(Piii2(c));
Piii3(c)=subs(PIII(3),Tc,c);
Piii3(c)=double(Piii3(c));
Piii4(c)=subs(PIII(4),Tc,c);
Piii4(c)=double(Piii4(c));
Piii5(c)=subs(PIII(5),Tc,c);
Piii5(c)=double(Piii5(c));
%%
Piv1(c)=subs(PIV(1),Tc,c);
Piv1(c)=double(Piv1(c));
Piv2(c)=subs(PIV(2),Tc,c);
Piv2(c)=double(Piv2(c));
Piv3(c)=subs(PIV(3),Tc,c);
Piv3(c)=double(Piv3(c));
Piv4(c)=subs(PIV(4),Tc,c);
Piv4(c)=double(Piv4(c));
Piv5(c)=subs(PIV(5),Tc,c);
Piv5(c)=double(Piv5(c));
% Pv(c)=subs(PV,Tc,c);
% Pv(c)=double(Pv(c));
end
% figure(1)
% plot(Pi1(150:end));
% hold on
% plot(Pi2(150:end));
% hold on
% plot(Pi3(150:end));
% hold on
% plot(Pi4(150:end));
% hold on
% plot(Pi5(150:end));
figure(2)
% plot(Pii(150:end));
% hold on
% figure(3)
plot(Piii1(150:end));
hold on
plot(Piii2(150:end));
hold on
plot(Piii3(150:end));
hold on
plot(Piii4(150:end));
hold on
plot(Piii5(150:end));
figure(3)
plot(Piv1(150:end));
hold on
plot(Piv2(150:end));
hold on
plot(Piv3(150:end));
hold on
plot(Piv4(150:end));
hold on
plot(Piv5(150:end));
% figure(5)
% plot(Pv(150:end));
% hold on
0 comentarios
Respuesta aceptada
Matt J
el 21 de En. de 2023
Editada: Matt J
el 21 de En. de 2023
i have this code that it runs and answers are correct but it takes so long...why?is there any solution?
It is unnecessary to use sym variables here. It is much faster to use numeric variables:
clc
clear;
% percent of the relay failure rate
tic;
for Tc=1:500
out(Tc)=doIt(Tc);
end
toc
Piii=[out.PIII];
Piv=[out.PIV];
figure(2)
plot(Piii(:,150:end)'); legend
figure(3)
plot(Piv(:,150:end)'); legend
function out=doIt(Tc)
SE=[0.99 0.9 0.8 0.5 0];
ME=[0 0 0 0 0];
eta=0.1;
for k=1:5
% permanent fault (lpf)
l1=2/8760;
% temporary faults (ltf)
l2=15/8760;
% relay failure (lp)
l3=0.01/8760;
% mal-trip failure rate (lext)
l4=0.00001/8760;
% reclosing switching rate (lrct)
l5=10800;
% main switching rate (lmct)
l6=30857.14;
% back-up switching rate (lbct)
l7=8640;
% relay instantaneous mal-trip (lrt-op)
l8=0.001/Tc;
% common cause failure rate of C and P (lcp)
l9=0.000001;
% manual switching rate to restore C (litc)
l10=0.5;
% manual switching rate to restore X (litx)
l11=0.5;
% failure rate of self-cheking system (lsc)
l12=0.002/8760;
% failure rato of monitoring circuit (lmn)
% l13=0.0005/8760;
% routine inseption rates (lrt)
l19=1/Tc;
% number of relay tested by self-cheking (msc)
m1=720;
% number of relay tested by inspected routine test (mrt)
m2=1;
% repair rates (mp)
m3=1;
% repaire rate of C (mc)
m4=1;
% portion of relay failure rate by self-cheking (lpsc)
l14=(1-eta)*l3*SE(k);
% portion of relay failure rate by monitoring (lpmn)
l15=0.0005/8760;
% portion of relay failure rate not detected (lprt)
l16=((1-eta)*l3*(1-SE(k)-ME(k)));
% portion of relay potential mal-trip failure rate (lpt-sc)
l17=eta*l3*SE(k);
% portion of relay potential mal-trip failure rate (lpt-rt)
l18=eta*l3*(1-SE(k)-ME(k));
A(1,1)=1-(l19+l1+l2+l12+l16+l14+l15+l18+l17+l4+l9);
A(1,2)=l1;A(1,4)=l2;A(1,6)=l12;A(1,7)=l19;A(1,8)=l16;A(1,9)=l14;A(1,10)=l15;
A(1,11)=l18;A(1,12)=l17;A(1,13)=l4;A(1,15)=l9;
A(2,2)=1-l6;
A(2,3)=l6;
A(3,3)=1-(l3+m4);
A(3,1)=m4;
A(3,17)=l3;
A(4,4)=1-l6;
A(4,5)=l6;
A(5,5)=1-l5;
A(5,1)=l5;
A(6,6)=1-(l1+l2+m1);
A(6,1)=m1;A(6,15)=(l1+l2);
A(7,7)=1-(m2+l1+l8);
A(7,1)=m2;A(7,13)=l8;A(7,15)=l1;
A(8,8)=1-(l19+l1);
A(8,10)=l19;A(8,15)=l1;
A(9,9)=1-(l12+l1+l2);
A(9,10)=l12;A(9,15)=l1+l2;
A(10,10)=1-(l1+l2+m3);
A(10,1)=m3;A(10,15)=l1+l2;
A(11,11)=1-(l19+l1+l3);
A(11,10)=l19;A(11,13)=l3;A(11,15)=l1;
A(12,12)=1-(l12+l3+l1+l2);
A(12,10)=l12;A(12,13)=l3;A(12,15)=l1+l2;
A(13,13)=1-l6;
A(13,14)=l6;
A(14,14)=1-(l10+l10);
A(14,1)=l10;A(14,10)=l10;
A(15,15)=1-l7;
A(15,16)=l7;
A(16,16)=1-l11;
A(16,17)=l11;
A(17,17)=1-(m3+m4);
A(17,3)=m3;A(17,10)=m4;
A(17,:)=1;
B=[0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1];
% format long
P=inv(A)*B;
out.PI(k,1)=P(1);
out.PII(k,1)=P(2,1)+P(3,1)+P(4,1)+P(5,1);
out.PIII(k,1)=P(6,1)+P(7,1)+P(8,1)+P(9,1)+P(10,1)+P(11,1)+P(12,1);
out.PIV(k,1)=P(15,1)+P(16,1)+P(17,1);
out.PV(k,1)=P(13,1)+P(14,1);
% PI=double(PI);
end
end
2 comentarios
Matt J
el 21 de En. de 2023
Here is one way you can bring out the differences in the plots, but as you can see they are very tiny. I can't imagine what significance the differences could have:
for Tc=1:1:500
out(Tc)=doIt(Tc);
end
Piii=[out.PIII]; Piii=Piii(2:5,:)-Piii(1,:);
Piv=[out.PIV]; Piv=Piv(2:5,:)-Piv(1,:);
figure(2)
semilogy(Piii(:,150:end)'); legend
figure(3)
semilogy(Piv(:,150:end)'); legend
Más respuestas (1)
the cyclist
el 21 de En. de 2023
Vectorizing the for loop gives a nice speedup. There are almost certainly other optimizations possible.
clc
clear;
% percent of the relay failure rate
SE=[0.99 0.9 0.8 0.5 0];
ME=[0 0 0 0 0];
eta=0.1;
for k=1:5
syms Tc
% permanent fault (lpf)
l1=2/8760;
% temporary faults (ltf)
l2=15/8760;
% relay failure (lp)
l3=0.01/8760;
% mal-trip failure rate (lext)
l4=0.00001/8760;
% reclosing switching rate (lrct)
l5=10800;
% main switching rate (lmct)
l6=30857.14;
% back-up switching rate (lbct)
l7=8640;
% relay instantaneous mal-trip (lrt-op)
l8=0.001/Tc;
% common cause failure rate of C and P (lcp)
l9=0.000001;
% manual switching rate to restore C (litc)
l10=0.5;
% manual switching rate to restore X (litx)
l11=0.5;
% failure rate of self-cheking system (lsc)
l12=0.002/8760;
% failure rato of monitoring circuit (lmn)
% l13=0.0005/8760;
% routine inseption rates (lrt)
l19=1/Tc;
% number of relay tested by self-cheking (msc)
m1=720;
% number of relay tested by inspected routine test (mrt)
m2=1;
% repair rates (mp)
m3=1;
% repaire rate of C (mc)
m4=1;
% portion of relay failure rate by self-cheking (lpsc)
l14=(1-eta)*l3*SE(k);
% portion of relay failure rate by monitoring (lpmn)
l15=0.0005/8760;
% portion of relay failure rate not detected (lprt)
l16=((1-eta)*l3*(1-SE(k)-ME(k)));
% portion of relay potential mal-trip failure rate (lpt-sc)
l17=eta*l3*SE(k);
% portion of relay potential mal-trip failure rate (lpt-rt)
l18=eta*l3*(1-SE(k)-ME(k));
A(1,1)=1-(l19+l1+l2+l12+l16+l14+l15+l18+l17+l4+l9);
A(1,2)=l1;A(1,4)=l2;A(1,6)=l12;A(1,7)=l19;A(1,8)=l16;A(1,9)=l14;A(1,10)=l15;
A(1,11)=l18;A(1,12)=l17;A(1,13)=l4;A(1,15)=l9;
A(2,2)=1-l6;
A(2,3)=l6;
A(3,3)=1-(l3+m4);
A(3,1)=m4;
A(3,17)=l3;
A(4,4)=1-l6;
A(4,5)=l6;
A(5,5)=1-l5;
A(5,1)=l5;
A(6,6)=1-(l1+l2+m1);
A(6,1)=m1;A(6,15)=(l1+l2);
A(7,7)=1-(m2+l1+l8);
A(7,1)=m2;A(7,13)=l8;A(7,15)=l1;
A(8,8)=1-(l19+l1);
A(8,10)=l19;A(8,15)=l1;
A(9,9)=1-(l12+l1+l2);
A(9,10)=l12;A(9,15)=l1+l2;
A(10,10)=1-(l1+l2+m3);
A(10,1)=m3;A(10,15)=l1+l2;
A(11,11)=1-(l19+l1+l3);
A(11,10)=l19;A(11,13)=l3;A(11,15)=l1;
A(12,12)=1-(l12+l3+l1+l2);
A(12,10)=l12;A(12,13)=l3;A(12,15)=l1+l2;
A(13,13)=1-l6;
A(13,14)=l6;
A(14,14)=1-(l10+l10);
A(14,1)=l10;A(14,10)=l10;
A(15,15)=1-l7;
A(15,16)=l7;
A(16,16)=1-l11;
A(16,17)=l11;
A(17,17)=1-(m3+m4);
A(17,3)=m3;A(17,10)=m4;
A(17,:)=1;
B=[0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1];
% format long
P=inv(A)*B;
% R=VPA(P);
% disp(P)
% disp('P1=')
% disp(P(1,1))
% disp('P2=')
% disp(P(2,1))
% disp('P3=')
% disp(P(3,1))
% disp('P4=')
% disp(P(4,1))
% disp('P5=')
% disp(P(5,1))
% disp('P6=')
% disp(P(6,1))
% disp('P7=')
% disp(P(7,1))
% disp('P8=')
% disp(P(8,1))
% disp('P9=')
% disp(P(9,1))
% disp('P10=')
% disp(P(10,1))
% disp('P11=')
% disp(P(11,1))
% disp('P12=')
% disp(P(12,1))
% disp('P13=')
% disp(P(13,1))
% disp('P14=')
% disp(P(14,1))
% disp('P15=')
% disp(P(15,1))
% disp('P16=')
% disp(P(16,1))
% disp('P17=')
% disp(P(17,1))
PI(k)=P(1);
PII(k)=P(2,1)+P(3,1)+P(4,1)+P(5,1);
PIII(k)=P(6,1)+P(7,1)+P(8,1)+P(9,1)+P(10,1)+P(11,1)+P(12,1);
PIV(k)=P(15,1)+P(16,1)+P(17,1);
PV(k)=P(13,1)+P(14,1);
% PI=double(PI);
end
cvec = 1:500;
Piii1=double(subs(PIII(1),Tc,cvec));
Piii2=double(subs(PIII(2),Tc,cvec));
Piii3=double(subs(PIII(3),Tc,cvec));
Piii4=double(subs(PIII(4),Tc,cvec));
Piii5=double(subs(PIII(5),Tc,cvec));
Piv1=double(subs(PIV(1),Tc,cvec));
Piv2=double(subs(PIV(2),Tc,cvec));
Piv3=double(subs(PIV(3),Tc,cvec));
Piv4=double(subs(PIV(4),Tc,cvec));
Piv5=double(subs(PIV(5),Tc,cvec));
% figure(1)
% plot(Pi1(150:end));
% hold on
% plot(Pi2(150:end));
% hold on
% plot(Pi3(150:end));
% hold on
% plot(Pi4(150:end));
% hold on
% plot(Pi5(150:end));
figure(2)
% plot(Pii(150:end));
% hold on
% figure(3)
plot(Piii1(150:end));
hold on
plot(Piii2(150:end));
hold on
plot(Piii3(150:end));
hold on
plot(Piii4(150:end));
hold on
plot(Piii5(150:end));
figure(3)
plot(Piv1(150:end));
hold on
plot(Piv2(150:end));
hold on
plot(Piv3(150:end));
hold on
plot(Piv4(150:end));
hold on
plot(Piv5(150:end));
% figure(5)
% plot(Pv(150:end));
% hold on
Ver también
Categorías
Más información sobre Continuous Waveforms en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!