Solving a differential equation using ode45

5 visualizaciones (últimos 30 días)
Melhem
Melhem el 7 de Feb. de 2023
Comentada: Melhem el 8 de Feb. de 2023
is it possible to solve this equation using ode45?
θ'' - µ*θ'^2 + (g/r)*(µ*cos(θ) - sin(θ)) = 0
µ, g, and r are given
  3 comentarios
John D'Errico
John D'Errico el 7 de Feb. de 2023
Why not? Did you try it? Do you have initial values? You will need two of them, of course, typically theta(0) and theta'(0), or at some point. We can't really offer too much help, as you have not provided any specifics. What are the values of those parameters? What are the initial values?
Read the help docs for ODE45, where it is explicitly described how to convert the problem into a pair of first order differential equations.
Melhem
Melhem el 7 de Feb. de 2023
yes I've tried it but the values don't make sense
here's the code:
In here I'm also trying to find the value of the normal force N
v0=10
mu=0.2
tf=1
function [t,y,N] = lab1(V0,mu,tf)
W=1;
g=32.2;
r=5;
tspan=linspace(0,tf,1000);
y0=[0;V0/r];
param=g/r;
[t,y]=ode45(@(t,y)EOM(t,y,param,mu),tspan,y0);
N=(-W*r*(y(:,2)).^2 + W*g*sin(y(:,1)))/mu;
function g=EOM(t,y,param,mu)
g(1,1)=y(2);
g(2,1)=-mu*y(2).^2 + param*(mu*cos(y(1)) - sin(y(1)));

Iniciar sesión para comentar.

Respuesta aceptada

Sam Chak
Sam Chak el 7 de Feb. de 2023
Editada: Sam Chak el 8 de Feb. de 2023
Edit: The code is revised to capture the event of the falling block. As mentioned in the problem, the symbol μ is related to the friction, which should dampen the falling motion at the beginning. The simulation stops when the block hits ground, that is when .
Please check the derivation of the equations of motion again. Not sure if the signs are correct or not.
V0 = 10;
mu = 0.6;
tf = 10;
W = 1;
g = 32.2;
r = 5;
tspan = linspace(0, tf, 1001);
y0 = [0; V0/r];
param = g/r;
options = odeset('Events', @BlockHitsGroundEventFcn);
[t, y, te, ye, ie] = ode45(@(t,y) EOM(t, y, param, mu), tspan, y0, options);
figure(1)
yyaxis left
plot(t, y(:,1)*180/pi), ylabel({'$\theta$, deg'}, 'Interpreter', 'latex')
yyaxis right
plot(t, y(:,2)), ylabel({'$\dot{\theta}$, rad/s'}, 'Interpreter', 'latex')
legend('y_1', 'y_2', 'location', 'best')
xlabel('t, sec'), grid on
figure(2)
N = (- W*r*y(:,2).^2 + W*g*sin(y(:,1)))/mu;
plot(t, N), grid on
xlabel('t'), ylabel('N')
function g = EOM(t, y, param, mu)
g(1,1) = y(2);
g(2,1) = - mu*y(2).^2 - param*(mu*cos(y(1)) - sin(y(1)));
end
function [position, isterminal, direction] = BlockHitsGroundEventFcn(t, y)
position = y(1) - pi/2; % When theta = 90 deg
isterminal = 1; % Halt integration
direction = 1; % When theta is increasing from 0 to 90 deg
end
  5 comentarios
Sam Chak
Sam Chak el 8 de Feb. de 2023
Hi @Melhem, I have edited the code in my Answer to capture the event by the block hits the ground.
Melhem
Melhem el 8 de Feb. de 2023
Thank you so much you're a life saviour.

Iniciar sesión para comentar.

Más respuestas (1)

Jan
Jan el 7 de Feb. de 2023
Movida: Jan el 7 de Feb. de 2023
θ'' - µ*θ'^2 + (g/r)*(µ*cos(θ) - sin(θ)) = 0 means:
θ'' = µ*θ'^2 - (g/r)*(µ*cos(θ) - sin(θ))
This does not match:
g(2,1) = -mu*y(2).^2 + param*(mu*cos(y(1)) - sin(y(1)));
% ^ ^

Categorías

Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by