How to use Nlinfit for a function with two independent variables?
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Faizan Lali
el 23 de Feb. de 2023
Comentada: Walter Roberson
el 27 de Feb. de 2023
Hi here is my data and code and I am trying to predict parameters for a function with two independent variables but Nlinfit is giving me error.
clc
clear %all; % Clear the workspace.
close all; % Close all figures.
format compact
%% Read in data
data =readmatrix('Flexible_BUC.xlsx');
x1=[7.50000000000000
7.50000000000000
7.70000000000000
5
5
5
5
5
5
5
5
5
7.50000000000000
7.50000000000000
7.50000000000000
7.50000000000000
7.50000000000000
6
6
6
6
6
6
3.75000000000000
3.75000000000000
3.75000000000000
3.75000000000000
3.75000000000000
8
8
8
8
8
8
7.50000000000000
7.50000000000000
7.50000000000000
8
8
8];
x2=[0.00153000000000000
0.00522000000000000
0.000189000000000000
3.73000000000000e-06
3.73000000000000e-06
1.17000000000000e-05
8.66000000000000e-05
1.17000000000000e-05
1.51000000000000e-05
2.99000000000000e-05
7.00000000000000e-05
7.92000000000000e-05
6.06000000000000e-05
0.000163000000000000
0.000656000000000000
0.000818000000000000
0.00129000000000000
9.78000000000000e-06
0.000161000000000000
0.000183000000000000
0.000204000000000000
0.000297000000000000
0.000343000000000000
0.00705000000000000
0.00850000000000000
0.0233000000000000
0.0250000000000000
0.0267000000000000
0.00125000000000000
0.00245000000000000
0.00391000000000000
0.00878000000000000
0.00111000000000000
0.00122000000000000
3.23000000000000e-05
4.26000000000000e-05
4.53000000000000e-05
4.13000000000000e-05
8.24000000000000e-05
8.33000000000000e-05];
yobs=[5.95833333300000
0.300000000000000
0.0625000000000000
0.111111111000000
0.213809289000000
0.140625000000000
0.651315789000000
0.351694915000000
12.0555555600000
0.626846311000000
0.555555556000000
0.136363636000000
6.38793103400000
0.233051458000000
0.540000000000000
0.0277777780000000
1.05555555600000
0.113636364000000
0.0933323590000000
0.352272727000000
3.20833333300000
0.897435897000000
1.17046404700000
1.41666666700000
1.79545454500000
1.15384615400000
1.85576923100000
10.8333333300000
0.848684211000000
6.18835443000000
0.767441860000000
0.527777778000000
1.54872306000000
0.337691494000000
1.08333333300000
1.87477002000000
1.81654734900000
1.97222222200000
0.550000000000000
0.340020401000000];
xm=[x1 x2];
%% Initial parameter guesses
C1=0.25;
C2=0.73;
beta0(1)=C1; %initial guess beta 1
beta0(2)=C2; %initial guess beta 2
p=length(beta0); %p = # parameters
%% define function to be used for inverse problem
fINV=@Project_funcINV;
%fnameINV=@forderexpINV;
[beta,resids,J,COVB,mse] = nlinfit(xm,yobs,fINV,beta0);
beta
%% Functions
function y=Project_funcINV(beta0,x1,x2)
c2s=@(x)-2.40874-39.748*(1+x).^-2.856;
y=100./(1+exp(-beta0(1).*c2s(x1)+(beta0(2).*c2s(x1).*log10(100.*x2))));
end
Someone can please help, I would appreciate it.
0 comentarios
Respuesta aceptada
Star Strider
el 23 de Feb. de 2023
You are using the correct approach with:
xm=[x1 x2];
In the function, refer to ‘x1’ as ‘xm(:,1)’ and ‘x2’ as ‘xm(:,2)’ , passing ‘xm’ as the independent variable to ‘Project_funcINV’. I made those changes, and added a fitnlm call to display the statistics, and provided a plot of the data and the fit to it (as a line plot).
Try this —
x1=[7.50000000000000
7.50000000000000
7.70000000000000
5
5
5
5
5
5
5
5
5
7.50000000000000
7.50000000000000
7.50000000000000
7.50000000000000
7.50000000000000
6
6
6
6
6
6
3.75000000000000
3.75000000000000
3.75000000000000
3.75000000000000
3.75000000000000
8
8
8
8
8
8
7.50000000000000
7.50000000000000
7.50000000000000
8
8
8];
x2=[0.00153000000000000
0.00522000000000000
0.000189000000000000
3.73000000000000e-06
3.73000000000000e-06
1.17000000000000e-05
8.66000000000000e-05
1.17000000000000e-05
1.51000000000000e-05
2.99000000000000e-05
7.00000000000000e-05
7.92000000000000e-05
6.06000000000000e-05
0.000163000000000000
0.000656000000000000
0.000818000000000000
0.00129000000000000
9.78000000000000e-06
0.000161000000000000
0.000183000000000000
0.000204000000000000
0.000297000000000000
0.000343000000000000
0.00705000000000000
0.00850000000000000
0.0233000000000000
0.0250000000000000
0.0267000000000000
0.00125000000000000
0.00245000000000000
0.00391000000000000
0.00878000000000000
0.00111000000000000
0.00122000000000000
3.23000000000000e-05
4.26000000000000e-05
4.53000000000000e-05
4.13000000000000e-05
8.24000000000000e-05
8.33000000000000e-05];
yobs=[5.95833333300000
0.300000000000000
0.0625000000000000
0.111111111000000
0.213809289000000
0.140625000000000
0.651315789000000
0.351694915000000
12.0555555600000
0.626846311000000
0.555555556000000
0.136363636000000
6.38793103400000
0.233051458000000
0.540000000000000
0.0277777780000000
1.05555555600000
0.113636364000000
0.0933323590000000
0.352272727000000
3.20833333300000
0.897435897000000
1.17046404700000
1.41666666700000
1.79545454500000
1.15384615400000
1.85576923100000
10.8333333300000
0.848684211000000
6.18835443000000
0.767441860000000
0.527777778000000
1.54872306000000
0.337691494000000
1.08333333300000
1.87477002000000
1.81654734900000
1.97222222200000
0.550000000000000
0.340020401000000];
xm=[x1 x2];
%% Initial parameter guesses
C1=0.25;
C2=0.73;
beta0(1)=C1; %initial guess beta 1
beta0(2)=C2; %initial guess beta 2
p=length(beta0); %p = # parameters
%% define function to be used for inverse problem
fINV=@Project_funcINV;
%fnameINV=@forderexpINV;
[beta,resids,J,COVB,mse] = nlinfit(xm,yobs,fINV,beta0);
beta
mdl = fitnlm(xm,yobs,fINV,beta0) % ADDED
figure % ADDED
stem3(x1, x2, yobs, 'filled')
hold on
plot3(x1, x2, Project_funcINV(beta,xm), '-r')
hold off
%% Functions
function y=Project_funcINV(beta0,xm)
c2s=@(x)-2.40874-39.748*(1+x).^-2.856;
y=100./(1+exp(-beta0(1).*c2s(xm(:,1))+(beta0(2).*c2s(xm(:,1)).*log10(100.*xm(:,2)))));
end
The fit is reasonably good, although ‘beta(2)’ may not be significnatly different from zero.
.
13 comentarios
Walter Roberson
el 27 de Feb. de 2023
Alex uses a commercial program named 1stOpt that does some very nice optimization. Sometimes I am able to improve a little on his results, but not usually, and when I do manage then it is only after a couple of days of continuous computations.
Más respuestas (0)
Ver también
Categorías
Más información sobre Descriptive Statistics en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!