Thomas algorithm - tridiagonal matrix
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Cesar Cardenas
el 1 de Mzo. de 2023
Comentada: Cesar Cardenas
el 2 de Mzo. de 2023
Is there any other way to code and solve the tridiagonal matrix? the idea would be to try to get the plot shown. Matlab beginner, so, no sure how to do it. Any help will be greatly appreciated. Thanks
clear
cm=1/100;
delta = 1*cm;
nu=1e-6;
Uinf=1;
H=2*delta;
y=linspace(0,H,40);
u=Uinf*erf(3*y/delta);
dy=mean(diff(y));
dx=100*dy;
Q=nu*dx/Uinf/dy^2;
a=-Q;
c=-Q;
b=1+2*Q;
N=length(y)-2;
M = diag(b*ones(1,N)) + diag(c*ones(1,N-1),1) + diag(a*ones(1,N-1),-1);
%Constant Ue
Ue = @(x) Uinf;
u = u(2:end-1);
x=0;
uall=[0,u,Ue(x)];
0 comentarios
Respuesta aceptada
Torsten
el 2 de Mzo. de 2023
Editada: Torsten
el 2 de Mzo. de 2023
clear
cm=1/100;
delta = 1*cm;
nu=1e-6;
Uinf=1;
H=2*delta;
y=linspace(0,H,40);
u=Uinf*erf(3*y/delta);
dy=mean(diff(y));
dx=100*dy;
Q=nu*dx/Uinf/dy^2;
a=-Q;
c=-Q;
b=1+2*Q;
N = length(y);
M = diag(b*ones(1,N)) + diag(c*ones(1,N-1),1) + diag(a*ones(1,N-1),-1);
M(1,:) = [1,zeros(1,N-1)];
M(end,:) = [zeros(1,N-1),1];
%Constant Ue
Ue = @(x) Uinf;
u = u(2:end-1);
x=0;
uall=[0,u,Ue(x)];
sol = M\uall.';
plot(y,sol)
grid on
5 comentarios
Torsten
el 2 de Mzo. de 2023
You can assign values to certain elements in a matrix by using a loop. But if the above line to define M is correct, it's elegant, isn't it ? Why do you want to define it differently ?
Más respuestas (0)
Ver también
Categorías
Más información sobre GPU Computing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!