how do i solve this equation using matlab

6 visualizaciones (últimos 30 días)
Anthony Irvine
Anthony Irvine el 4 de Mzo. de 2023
Comentada: Rik el 9 de Mzo. de 2023
T(x,y,z,t)=\frac{2\times A\times P_\max\times\sqrt\alpha}{k\times\pi^\frac{2}{3}\times r^2}\int_0^{\sqrt t}\times\frac{1}{1+\frac{4\times\alpha\times u^2}{r^2}} \times\exp (\frac{-x^2-y^2}{r^2+4\times\alpha\times u^2}-\frac{z^2}{4\times\alpha\times u})du
ive created my equation using latex but i am not sure how to write a script to solve for T and plot a temperature time graph. some guidance would be appreciated.
  3 comentarios
John D'Errico
John D'Errico el 4 de Mzo. de 2023
It seems to have some errors in it. At least LaTeX did not seem to like what it saw on my computer. It is difficult to write MATLAB code for something if you cannot even show the problem you want to solve.
So if you want help, then you need to make it possible to help you.
Rik
Rik el 9 de Mzo. de 2023
I recovered the removed content from the Google cache (something which anyone can do). Editing away your question is very rude. Someone spent time reading your question, understanding your issue, figuring out the solution, and writing an answer. Now you repay that kindness by ensuring that the next person with a similar question can't benefit from this answer.

Iniciar sesión para comentar.

Respuestas (1)

Torsten
Torsten el 4 de Mzo. de 2023
Movida: Torsten el 4 de Mzo. de 2023
T = @(x,y,z,t) 2*A*P_max*sqrt(alpha)/(k*pi^(2/3)*r^2)*integral(@(u)1./(1+4*alpha*u.^2/r^2).*exp(-(x^2+y^2)./(r^2+4*alpha*u.^2)-z^2./(4*alpha*u),0,sqrt(t))
  7 comentarios
Torsten
Torsten el 4 de Mzo. de 2023
tic
x=1;
y=1;
z=1;
A = 1;
P_max = 1;
r = 1;
k = 1;
alpha = 1;
T = @(x,y,z,t) 2*A*P_max*sqrt(alpha)/(k*pi^(2/3)*r^2)*integral(@(u)1./(1+4*alpha*u.^2/r^2).*exp(-(x^2+y^2)./(r^2+4*alpha*u.^2)-z^2./(4*alpha*u)),0,sqrt(t))
T = function_handle with value:
@(x,y,z,t)2*A*P_max*sqrt(alpha)/(k*pi^(2/3)*r^2)*integral(@(u)1./(1+4*alpha*u.^2/r^2).*exp(-(x^2+y^2)./(r^2+4*alpha*u.^2)-z^2./(4*alpha*u)),0,sqrt(t))
t_upper = 3;
t = linspace(0, t_upper, 250);
T_num = arrayfun(@(t) T(x,y,z,t),t)
T_num = 1×250
0 0.0004 0.0013 0.0024 0.0037 0.0050 0.0063 0.0077 0.0091 0.0105 0.0118 0.0132 0.0146 0.0160 0.0173 0.0186 0.0200 0.0213 0.0226 0.0239 0.0251 0.0264 0.0276 0.0289 0.0301 0.0313 0.0325 0.0336 0.0348 0.0359
plot(t,T_num)
toc
Elapsed time is 0.492061 seconds.
Torsten
Torsten el 4 de Mzo. de 2023
how can i change the integration limits so that it could be sqrt ( time minus a constant)
By defining the constant before defining the function handle T and changing "sqrt(t)" in the definition of T to whatever you like as upper limit of integration.

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by