Pcg method is imprecise
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Fedor
el 7 de Mzo. de 2023
Comentada: Fedor
el 11 de Mzo. de 2023
I must be wrong in my code, so feel free to note where I've mistaken. I'm testing pcg method's precision through following scheme: generate random positive definitive matrix, and let it be linear system with the desired solution as (1, 1, 1, 1...) - to simplify testing. We can solve that linear system with division or simply state that solution should be (1, 1, 1, 1...). Then we solve system again with pcg method and test that all xi are nearby 1. And it doesn't work - pcg's solution does not meet needed tolerance(precision). Maybe I understand the meaning of tolerance incorrectly?
Code:
tol = 1e-8;
iterations = 150;
matrix_1_size = 50;
matrix_1 = sprand(matrix_1_size,matrix_1_size,.5);
matrix_1 = matrix_1'*matrix_1;
B_1 = sum(matrix_1, 2);
expected_solution_1 = matrix_1 \ B_1;
pcg_solution_1 = pcg(matrix_1, B_1, tol, iterations);
diff = abs(pcg_solution_1 - expected_solution_1);
tolerance = zeros(matrix_1_size, 1) + tol;
assert(all(diff <= tolerance));
0 comentarios
Respuesta aceptada
Chunru
el 8 de Mzo. de 2023
The pcg method use tol as a relative tolerance such that norm(residual) < tol*norm(rhs). So you need a different assert.
tol = 1e-8;
iterations = 150;
matrix_1_size = 50;
matrix_1 = sprand(matrix_1_size,matrix_1_size,.5);
matrix_1 = matrix_1'*matrix_1;
B_1 = sum(matrix_1, 2);
expected_solution_1 = matrix_1 \ B_1;
pcg_solution_1 = pcg(matrix_1, B_1, tol, iterations);
diff = abs(pcg_solution_1 - expected_solution_1);
norm(diff)
norm(pcg_solution_1-expected_solution_1)
norm(B_1)
norm(pcg_solution_1-expected_solution_1)/norm(B_1) < tol
assert(norm(pcg_solution_1-expected_solution_1)/norm(B_1) < tol)
Más respuestas (0)
Ver también
Categorías
Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!