Constraints on Parameter Estimation

3 visualizaciones (últimos 30 días)
Faizan Lali
Faizan Lali el 11 de Mzo. de 2023
Comentada: Torsten el 13 de Mzo. de 2023
I am trying to fit linear regression model and predict parameters without intercept. I have written my code as under;
tbl=table(yobs,x1,x2,x3);
mdl = fitlm(tbl,'yobs ~ x1 + x2 + x3 - 1')
but I am getting the estimates which are negative but in my model all parameters should be positive. LB>=0 and UB=inf. How to set these constraints while doing the prediction.

Respuesta aceptada

Torsten
Torsten el 11 de Mzo. de 2023
Use lsqlin instead of fitlm.
  6 comentarios
Torsten
Torsten el 13 de Mzo. de 2023
This is the best fit you can get without intercept and the constraints you want to impose on the parameters.
Torsten
Torsten el 13 de Mzo. de 2023
According to the documentation,
yobs ~ x1 + x2 + x3 - 1
means a three-variable linear model without intercept.
Thus the "-1" just means: no constant term, not
yobs = p1*x1 + p2*x2 + p3*x3 - 1
Very confusing.

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by