Calculating the eigenvalues of simple shapes

5 visualizaciones (últimos 30 días)
John Bach
John Bach el 13 de Mzo. de 2023
Editada: John Bach el 25 de Mzo. de 2023
Hi there,
I've used the strel function to create a range of shapes and I would like to now calculate the eigenvalues of each shape although I am struggling to do this and would really appreciate any help regarding this.
Thank you in advance,
  1 comentario
the cyclist
the cyclist el 13 de Mzo. de 2023
Editada: the cyclist el 13 de Mzo. de 2023
Do you have a reference for what the eigenvalue of a binary shape is? I did some googling of keywords, but didn't find something definite. (Maybe this is well known in image processing, but that is not my specialty.)
Are you stuck on the math of it, or the MATLAB coding? Have you written any code?

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 13 de Mzo. de 2023
M = double(strel('disk',5).Neighborhood)
M = 9×9
0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0
E = simplify(eig(sym(M)))
E = 
vpa(E)
ans = 
(the imaginary component is due to round-off error)
M2 = double(strel('octagon',12).Neighborhood)
M2 = 25×25
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E2 = simplify(eig(sym(M2)))
E2 = 
vpa(imag(E2))
ans = 
vpa(E2)
ans = 
  1 comentario
Bjorn Gustavsson
Bjorn Gustavsson el 15 de Mzo. de 2023
The/One benefit of using svd instead of eig is that one get real singular values - which is not a guarantee with eig. Appart from that the soutions should be comparable/similar/identical.

Iniciar sesión para comentar.

Más respuestas (1)

Bjorn Gustavsson
Bjorn Gustavsson el 13 de Mzo. de 2023
If you have a binary image then why not just run through the svd and see what you get:
I = zeros(256);
I(64:(64+128),64:(64+128)) = 1;
[U,S,V] = svd(I);
figure
subplot(1,2,1)
plot(diag(S))
subplot(1,2,2)
imagesc(U(:,1)*S(1,1)*V(:,1)')
% Or for a funnier example:
I = numgrid('B',258);
I = I(2:end-1,2:end-1);
[U,S,V] = svd(I);
subplot(2,2,1)
plot(diag(S))
subplot(2,2,2)
imagesc(U(:,1)*S(1,1)*V(:,1)')
subplot(2,2,2)
imagesc(U(:,1:4)*S(1:4,1:4)*V(:,1:4)')
subplot(2,2,2)
imagesc(U(:,1:16)*S(1:16,1:16)*V(:,1:16)')
You can also look at the individual eigen-images by something like:
imagesc(U(:,7)*V(:,7)')
HTH

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by