Minimize the sum of squared errors between the experimental and predicted data in order to calculate two parameters

41 visualizaciones (últimos 30 días)
In my research work, I use a model and I want to minimize the sum of squared errors between the experimental and predicted data in order to calculate two parameters.
The experimental data are:
u exp: [0.709; 0.773 ;0.823 ;0.849 ;0.884 ;0.927 ;0.981 ;1.026 ;1.054 ;1.053 ;1.048;1.039] ;
observed at z=[ 0.006;0.012;0.018;0.024;0.03;0.046;0.069;0.091;0.122;0.137;0.152;0.162];
The equation of the model that I use is:
u model=0.1073*((log(0.13/z)-1/3*(1-(z/0.13)^3)+2*a*(1+(b)^0.5)*cos(11.89*z)); and I want to calculate the parameters “a” et “b” by minimizing the sum of squared errors between “u exp” and “u model”.
Someone here can help me please?
Thank you already for your help!

Respuesta aceptada

Davide Masiello
Davide Masiello el 29 de Mzo. de 2023
Editada: Torsten el 29 de Mzo. de 2023
You can use MatLab's fmincon.
z = [0.006;0.012;0.018;0.024;0.03;0.046;0.069;0.091;0.122;0.137;0.152;0.162];
u_exp = [0.709;0.773;0.823;0.849;0.884;0.927;0.981;1.026;1.054;1.053;1.048;1.039];
u_mod = @(P) 0.1073*(log(0.13./z)-1/3*(1-(z/0.13).^3)+2*P(1).*(1+P(2).^0.5).*cos(11.89*z));
sum_sq_err = @(P) sum((u_exp-u_mod(P)).^2);
P = fmincon(sum_sq_err,[0.1,0.1]);
Local minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
a = P(1)
a = 2.0158
b = P(2)
b = 0.3185
hold on
plot(z,u_exp,'o')
plot(z,u_mod(P))
hold off
grid on
  4 comentarios
ORESTE SAINT-JEAN
ORESTE SAINT-JEAN el 29 de Mzo. de 2023
Movida: Star Strider el 29 de Mzo. de 2023
z = [0.006;0.012;0.018;0.024;0.03;0.046;0.069;0.091;0.122;0.137;0.152;0.162];
u_exp = [0.345;0.281;0.231;0.205;0.17;0.127;0.073;0.028;0.00;0.0010;0.0060;0.015];
u_mod = @(P) 0.1073*((log(0.132./z)-(1/3)*(1-(z/0.132).^3)+2*P(2).*(1+(P(1)).^0.5).*(cos(pi*z/0.264)).^2));
sum_sq_err = @(P) sum((u_exp-u_mod(P)).^2);
P = fminsearch(sum_sq_err,[0.01,0.01])
hold on
plot(z,u_exp,'o')
plot(z,u_mod(P))
hold off
grid on
P =
0.0506 0.2198
With the god data, everything it's ok.
THANK YOU FOR YOUR HELPS!!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by