- Properties of shallow neural networks: https://www.mathworks.com/help/deeplearning/ref/network.html?searchHighlight=shallow%20networks&s_tid=srchtitle_support_results_4_shallow%20networks#:~:text=given%20property%20values-,Properties,-Architecture%20Properties
- Neural network object properties: https://www.mathworks.com/help/deeplearning/ug/neural-network-object-properties.html
How can I change the regularization (weight decay) in fitnet?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I use fitnet to create a 50-node model, with training and validation ratios set to 30% and 70%. I want the regularization (weight decay) set at 0.1 and 0.5 and and then find mean and variance of MSEs for training and validation portions of the dataset from the 10 repetitions. How can I do it?
0 comentarios
Respuestas (1)
Binaya
el 21 de Ag. de 2024
Editada: Binaya
el 21 de Ag. de 2024
Hi Bao
To use regularization in "fitnet", you can modify the regularization performance parameter of the network. The following code snippet shows how to use regularization:
net = fitnet(50);
net.performParam.regularization = 0.1; % or 0.5
This parameter can be initialized alongside other parameters defined to configure the network. The rest of the provided code remains the same and the network can be trained to calculate the mean MSEs as per your requirement.
You can refer to the following links to understand about:
0 comentarios
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!