I have mathematical model with 7 equation . and its difficult to find endemic equilibrium point with analitical , i want to solve with numerical method

4 visualizaciones (últimos 30 días)
can you help me to find the endemic equilibrium point , with all the parameter known
close all; clear all; clc;
Pg=0.0068;
Ps=0.012;
Pr=0.006;
pe=0.002;
beta1=0.00702;
beta2=0.00702;
beta3=0.00702;
d4=1.7143;
u=0.05;
a1=1.10;
a2=4.6205;
a4=4.6666;
a5=1.10;
c1=0.0002;
c2=0.032;
c4=0.032;
c5=0.0002;
d10=1.2*10^-7;
d11=4.2*10^-8;
d12=1.0*10^-7;
d20=0.2051;
d21=0.00431;
d22=19.4872;
d50=1.2*10^-7;
d51=4.2*10^-8;
d52=1.0*10^-7;
tau=0.1615;
mu=0.00371;
psi=0.01813;
delta=2.4*10^-4;
gamma=0.136;
alpha=2.0;
%t = linspace(0,0.1,100)';
%tspan = [0 1000];
X0 = [1.0 0.01 0.0 1.0 0.0 0.01 0.01];
t0 = 0;
tf = 1000;
options = [];
%options=odeset('Abstol', 1e-6, 'Reltol', 1e-6);
[t,y1]=ode45(@glioma1,[t0:0.1:tf],X0,options,Pg,Ps,pe, beta1, beta2,a1, a2, a4, a5, c1,c2,c4,c5,u,d10,d11,d12,d20,d21,d22,d50,d51,d52,d4,tau,mu, beta3,psi, delta, gamma,alpha, Pr);
function hdot = glioma1(t,x,Pg,Ps,pe, beta1, beta2,a1, a2, a4, a5, c1,c2,c4,c5,u,d10,d11,d12,d20,d21,d22,d50,d51,d52,d4,tau,mu, beta3,psi, delta, gamma,alpha, Pr);
% The time-dependent term is A * sin(w0 * t - theta)
%H = 1*sin(-1*t);
%G = x(1)
hdot=zeros(7,1);
%H= heaviside(x(5));
v=0.6;
Phi=3.3*10^-3;
H=0;
if x(6)>0 || x(7)>0
H = 1;
%else%if (x(5)<=0);
% H = 0;
end
hdot(1)=Pg*x(1)*(1-x(1))-beta1*x(1)*(x(2)+x(3))-(d10+d11*x(4)+d12*x(7))*(x(1)*x(6))/(a1+x(1));
hdot(2)=Ps*x(2)*(1-(x(2)+x(3))/1+tau*x(4))-beta2*x(1)*x(2)-u*x(2)*H-(d20+d21*x(4)+d22*x(7))*(x(2)*x(6))/(a2+x(2));
hdot(3)=Pr*x(3)*(1-(x(2)+x(3))/(1+tau*x(4)))-beta3*x(1)*x(3)+u*x(2)*H-v*H*x(3);
hdot(4)=mu*(x(2)+x(3))+pe*x(4)*(1-x(4))-d4*((x(4)*x(7))/a4+x(4));
if (hdot(1)<0)
hdot(5)=alpha*hdot(1)*x(5)-(d50+d51*x(4)+d52*x(7))*(x(5)*x(6))/a5+x(5);
elseif (hdot(1)>0)
hdot(5)=-(d50+d51*x(4)+d52*x(7))*(x(5)*x(6))/a5+x(5);
end
hdot(6)=Phi-(psi+c1*x(1)/(a1+x(1))+c2*x(2)/(a2+x(2))+c5*x(5)/(a5+x(5)))*x(6);
hdot(7)=delta-(gamma+c4*x(4)/(a4+x(4)))*x(7);
%hdot = hdot';
%hdot=[hdot(:);H,h1];
% To make xdot a column
% End of FUN1.M
end
  1 comentario
Walter Roberson
Walter Roberson el 12 de Abr. de 2023
The mathematics of ode45 is not valid when you have discontinuities in the first or second deriviatives of the equations. You need to construct event functions to detect each condition under which you are changing your equations -- detect x(6) or x(7) changing between negative and positive, detect hdot(1) changing between negative and positive.
Question: what should your hdot(5) be if hdot(1) is exactly 0?

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Logical en Help Center y File Exchange.

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by