solve the mass spring system where the mass matrix depends explicitly on time
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
nado
el 12 de Abr. de 2023
Comentada: nado
el 28 de Abr. de 2023
Hello everyone,
I was wondering how to solve a system of two ODEs where the mass matrix is time dependent. The system of differential equation is in the following form:
[M]*X_double_dot +K*X=0;
where K=[2 1;5 8] and [M]=[t 0; 0 t], t is the time.
My question is : is it possible to solve this kind of ODEs with ode functions (ode45, ode15s,...) or one should evaluate the mass matrix at each time step ?
Best Regards,
Nado
1 comentario
Sam Chak
el 12 de Abr. de 2023
Yes, possible. The total rocket mass also decreases as the acceleration of the rocket increases due to fuel mass burns away.
Respuesta aceptada
Torsten
el 12 de Abr. de 2023
Setting y1' = y3 and y2' = y4, you arrive at the following code:
M = @(t) [t 0; 0 t];
K = [2 1;5 8];
MM = @(t)[eye(2),zeros(2);zeros(2),M(t)];
KK = [zeros(2),-eye(2);K,zeros(2)];
fun = @(t,y) -KK*y;
options = odeset('Mass',MM,'MStateDependence','none');
y0 = [0 0 1 1];
[T,Y] = ode45(fun,[0 1],y0);
plot(T,Y)
Más respuestas (0)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!