Triangular-weighted moving average filter

11 visualizaciones (últimos 30 días)
Mateusz Rzeszowski
Mateusz Rzeszowski el 13 de Abr. de 2023
Respondida: Meg Noah el 9 de Ag. de 2025
Hi,
I`m looking for function or source code for Triangular-weighted moving average filter to apply it and make my data processing.
High-frequency noise shall be removed from the measured signals using a triangular-weighted moving average with a smoothing width of 100 ms.
can someone share the experience ?

Respuestas (2)

Image Analyst
Image Analyst el 13 de Abr. de 2023
Use conv and set up your kernel to be a triangle shape.
  1 comentario
Dan
Dan el 30 de Jul. de 2025
Try:
tri_weights = triang('sz');
filtered_data = conv('data', tri_weights, "same") / sum(tri_weights);

Iniciar sesión para comentar.


Meg Noah
Meg Noah el 9 de Ag. de 2025
Here's an example of high frequency noise being removed with a triangular filter, if by width you mean the base of the triangle:
signal = repmat([zeros(1,500) ones(1,2000) zeros(1,500)],1,10);
time_ms = 0.1*(1:numel(signal));
dt_ms = time_ms(2)-time_ms(1);
filter = triang(round(100/dt_ms))/sum(triang(round(100/dt_ms)));
fprintf(1,'Sum of energy conserving filter should be 1 = %f\n', sum(filter(:)));
Sum of energy conserving filter should be 1 = 1.000000
fprintf(1,'Filter width = %d samples = %f ms',numel(filter),numel(filter)*dt_ms);
Filter width = 1000 samples = 100.000000 ms
smooth_signal = conv(signal,filter,'same');
plot(time_ms,signal,'b','DisplayName','Signal');
hold on
plot(time_ms,smooth_signal,'r','DisplayName','Smoothed Signal');
legend('location','best');
xlabel('Time [ms]');
ylabel('Signal');
You can also apply the convolution theorem to do it with Fourier transforms.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by