Fourier Series Integration in terms of Pi

9 visualizaciones (últimos 30 días)
Bob Gill
Bob Gill el 17 de Abr. de 2023
Editada: VBBV el 15 de Jul. de 2024
Hello,
The following code is just to check my integration of a fourier series transform, but the output doesn't seem to be right for bn. It displays a large number at the end of the bn output.
syms t
syms n 'integer'
an = (1/pi)*(int(-1*cos(n*pi*t/pi),-pi,-pi/2)+int(0*cos(n*pi*t/pi), -pi/2, pi/2)+int(1*cos(n*pi*t/pi), pi/2, pi))
bn = (1/pi)*(int(-1*sin(n*pi*t/pi),-pi,-pi/2)+int(0*sin(n*pi*t/pi), -pi/2, pi/2)+int(1*sin(n*pi*t/pi), pi/2, pi))
pretty(an)
pretty(bn)

Respuestas (1)

VBBV
VBBV el 17 de Abr. de 2023
Editada: VBBV el 15 de Jul. de 2024
Hi @Bob Gill, the value of bn can be computed as follows
syms t n 'integer'
an = (1/pi)*(int(-1*cos(n*pi*t/pi),-pi,-pi/2)+int(0*cos(n*pi*t/pi), -pi/2, pi/2)+int(-1*cos(n*pi*t/pi), pi/2, pi))
an = 
bn = (1/pi)*(int(-1*sin(n*pi*t/pi),-pi,-pi/2)+int(0*sin(n*pi*t/pi), -pi/2, pi/2)+int(-1*sin(n*pi*t/pi), pi/2, pi))
bn = 
0
vpa(an,2)
ans = 
vpa(bn,2)
ans = 
0.0
  1 comentario
VBBV
VBBV el 17 de Abr. de 2023
Editada: VBBV el 17 de Abr. de 2023
Use vpa to ccompute the bn value. You can also consider the vpaintegral function to compute the values for an and bn

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by