How to fix ode graphs?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Fatemeh
el 20 de Abr. de 2023
Comentada: Star Strider
el 20 de Abr. de 2023
Hello, I'm trying to combine these two ode plots into one chart, but it gives me two different charts. Can someone please help me with this?
syms y(x) x Y
N=5;
r=0.05;
m=0.01;
p=1;
s=1;
t=0.1;
a=0.25;
b=0.25;
C0=1;
C=5;
t0= N+r+t*p*s-m;
t1=-(N+r+t*p*s-m);
Dy = diff(y);
D2y = diff(y,2);
ode = y-(1/x)*(N+r)-((t*p*s*Dy)/y)+((Dy*((s^2)-m))/y)+((D2y*x*(s^2))/(2*y));
[VF,Subs] = odeToVectorField(ode);
odefcn = matlabFunction(VF, 'Vars',{x,Y});
tspan = [C0 80];
ic = [t0 t1];
[x,y] = ode45(odefcn, tspan, ic);
figure
plot(x, y)
grid
hold on
syms y(x) x Y
f=(x+(x^2+4*r*x*(1-a-b))^0.5)/(2*(1-a-b));
t00=N/C;
t11=-N/(C^2);
Dy = diff(y);
D2y = diff(y,2);
ode2= y-((C-x+f*((1/(r+f))^(1/(1-a-b)))+t*p*s*x*Dy+x*Dy*((s^2)-m)+Dy*(C-x)+0.5*D2y*(x^2)*(s^2)-x*(s^2)*Dy)/x*(1+t*p*s-m));
[VF1,Subs1] = odeToVectorField(ode2);
odefcn1 = matlabFunction(VF1, 'Vars',{x,Y});
tspan2 = [C 1];
ic2 = [t00 t11];
[x,y] = ode45(odefcn1, tspan2, ic2);
figure
plot(x, y)
grid
hold off
0 comentarios
Respuesta aceptada
Star Strider
el 20 de Abr. de 2023
You are telling it to produce two different plots because of two separate figure calls.
syms y(x) x Y
N=5;
r=0.05;
m=0.01;
p=1;
s=1;
t=0.1;
a=0.25;
b=0.25;
C0=1;
C=5;
t0= N+r+t*p*s-m;
t1=-(N+r+t*p*s-m);
Dy = diff(y);
D2y = diff(y,2);
ode = y-(1/x)*(N+r)-((t*p*s*Dy)/y)+((Dy*((s^2)-m))/y)+((D2y*x*(s^2))/(2*y));
[VF,Subs] = odeToVectorField(ode);
odefcn = matlabFunction(VF, 'Vars',{x,Y});
tspan = [C0 80];
ic = [t0 t1];
[x1,y1] = ode45(odefcn, tspan, ic);
figure
plot(x1, y1)
grid
hold on
syms y(x) x Y
f=(x+(x^2+4*r*x*(1-a-b))^0.5)/(2*(1-a-b));
t00=N/C;
t11=-N/(C^2);
Dy = diff(y);
D2y = diff(y,2);
ode2= y-((C-x+f*((1/(r+f))^(1/(1-a-b)))+t*p*s*x*Dy+x*Dy*((s^2)-m)+Dy*(C-x)+0.5*D2y*(x^2)*(s^2)-x*(s^2)*Dy)/x*(1+t*p*s-m));
[VF1,Subs1] = odeToVectorField(ode2);
odefcn1 = matlabFunction(VF1, 'Vars',{x,Y});
tspan2 = [C 1];
ic2 = [t00 t11];
[x2,y2] = ode45(odefcn1, tspan2, ic2);
figure
plot(x2, y2)
grid
hold off
figure % All Together 1!
plot(x1,y1(:,1), 'DisplayName','(x_1,y_1_1)')
hold on
plot(x1,y1(:,2), 'DisplayName','(x_1,y_1_2)')
plot(x2, y2(:,1), 'DisplayName','(x_2,y_2_1)')
plot(x2, y2(:,2), 'DisplayName','(x_2,y_2_2)')
hold off
grid
legend('Location','best')
figure % All Together 2!
yyaxis left
plot(x1,y1(:,1), 'DisplayName','(x_1,y_1_1)')
hold on
plot(x1,y1(:,2), 'DisplayName','(x_1,y_1_2)')
hold off
yyaxis right
plot(x2, y2(:,1), 'DisplayName','(x_2,y_2_1)')
hold on
plot(x2, y2(:,2), 'DisplayName','(x_2,y_2_2)')
hold off
grid
legend('Location','best')
The ‘x’ limits in the two integrations are not the same.
.
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!