Multioutput Regression models in MATLAB
52 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Alejandro Plata
el 5 de Jun. de 2023
I am working on a project where I need to predict multiple response variables for a given data set likely using random forests or boositng. Are there any functions I could use that might provide what I am looking for. Basically, what I mean is:
data = (2-D matrix of regressors)
regression model = regression_function(data,response variables)
0 comentarios
Respuesta aceptada
Ive J
el 6 de Jun. de 2023
I'm not aware of such a function in MATLAB, but you can loop over your target/response variables, and each time fit a new model. Something like this:
models = cell(numel(responseVars), 1);
for k = 1:numel(models)
models{k} = fitrensemble(data(:, [features, responseVars(k)], responseVars(k)); % data table contains all features + outcomes
end
7 comentarios
the cyclist
el 8 de Jun. de 2023
fitcecoc doesn't fit multiple response variables. It fits a single (categorical) response variable that has more than two categories.
Ive J
el 8 de Jun. de 2023
Editada: Ive J
el 8 de Jun. de 2023
Yes, that's correct and I didn't mean fitcecoc is multivariate. For multivariate SVM one could check sklearn. But for this specific problem of OP, I meant something like this by aggregating different responses to see how one label vs others could differ compared to separate SVMs:
y1 = ["y1-1", "y1-2", "y1-3"];
y2 = ["y2-1", "y2-2"];
y_multi = y1' + "_" + y2;
y_multi = categorical(y_multi(:))
Más respuestas (1)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!