3D curve fitting

38 visualizaciones (últimos 30 días)
tabf
tabf el 12 de Jun. de 2023
Comentada: tabf el 24 de Jun. de 2023
I am a beginner in MATLAB, and now I have obtained a point cloud data for 3D curve fitting relative to these points, not surface fitting. Is there any method that can achieve good 3D curve fitting? thanks
  11 comentarios
Mathieu NOE
Mathieu NOE el 23 de Jun. de 2023
this is a code to find a polynomial fit for the S shaped groove (trajectory)
N = readmatrix('S.txt');
x = N(:, 1);
y = N(:, 2);
z = N(:, 3);
% detrend the Z data
order = 1;
p = polyfitn([x,y],z,order);
pC = p.Coefficients; % get the polynomial coefficients
pTerms = p.ModelTerms;
% create the polynomial model (z = f(x,y))
zt = 0;
for k = 1:numel(pC)
zt = zt + pC(k)*(x.^pTerms(k,1)).*(y.^pTerms(k,2)); %
end
figure(1),
plot3(x,y,z,'r.',x,y,zt,'.k','linewidth',2); %
xlabel('X');
ylabel('Y');
zlabel('Z');
legend('raw data','fitted plane');
axis tight square
% apply detrend to the Z data
zd = z - zt;
figure(2),
plot3(x,y,zd,'.','linewidth',2); %
xlabel('X');
ylabel('Y');
zlabel('Z');
axis tight square
% keep the highets z points to get the S shape of the groove
id = (zd>0.85*max(zd));
xx = x(id);
yy = y(id);
% make sure x data is unique and sorted
[xx,ia,ic] = unique(xx);
yy = yy(ia);
% Fit a polynomial p of degree "degree" to the (x,y) data:
degree = 5;
p = polyfit(xx,yy,degree);
% Evaluate the fitted polynomial p and plot:
yyf = polyval(p,xx);
eqn = poly_equation(flip(p)); % polynomial equation (string)
Rsquared = my_Rsquared_coeff(yy,yyf); % correlation coefficient
figure(3);plot(xx,yy,'*',xx,yyf,'-')
xlabel('X');
ylabel('Y');
legend('data',eqn)
title(['Data fit , R² = ' num2str(Rsquared)]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Rsquared = my_Rsquared_coeff(data,data_fit)
% R² correlation coefficient computation
% The total sum of squares
sum_of_squares = sum((data-mean(data)).^2);
% The sum of squares of residuals, also called the residual sum of squares:
sum_of_squares_of_residuals = sum((data-data_fit).^2);
% definition of the coefficient of correlation is
Rsquared = 1 - sum_of_squares_of_residuals/sum_of_squares;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function eqn = poly_equation(a_hat)
eqn = " y = "+a_hat(1);
for i = 2:(length(a_hat))
if sign(a_hat(i))>0
str = " + ";
else
str = " ";
end
if i == 2
eqn = eqn+str+a_hat(i)+" * x";
else
eqn = eqn+str+a_hat(i)+" * x^"+(i-1)+" ";
end
end
eqn = eqn+" ";
end
tabf
tabf el 24 de Jun. de 2023
I tried to fit the 2D curves of XY and yz first, and then merge the two curves into one 3D curve, but the results I have obtained are not very good now

Iniciar sesión para comentar.

Respuesta aceptada

Mathieu NOE
Mathieu NOE el 15 de Jun. de 2023
hello again
I can make you this suggestion
I devised that your curve could be parametrized by these 2 equations :
z = a + b*y;
x = c + d*sin(w*y+e);
hope it helps
% ptCloud = pcread('quxiandian.pcd');
% N = ptCloud.Location;
N = readmatrix('QUXIANDIAN.txt');
x = N(:, 1);
y = N(:, 2);
z = N(:, 3);
%% model fit
% z = a + b*y;
% x = c + d*sin(w*y+e);
% initial values (for further optimisation - see below)
w = (2*pi)/(max(y)-min(y));
b = (max(z)-min(z))/(max(y)-min(y));
a = z(1) - b*y(1);
c = mean(x);
d = (max(x)-min(x))/2;
e = 4;
% create data for the fit model
yf = linspace(min(y),max(y),100);
zf = a + b*yf;
xf = c + d*sin(w*yf+e);
% Fit a polynomial p of degree "degree" to the (y,z) data:
degree = 1;
p = polyfit(y,z,degree);
a = p(2);
b = p(1);
% Fit custom equation to the (x,y) data:
% option 1 : with fminsearch
f = @(c,d,e,w,y) c + d*sin(w*y+e);
obj_fun = @(params) norm(f(params(1), params(2), params(3), params(4), y)-x);
C1_guess = [c d e w];
sol = fminsearch(obj_fun, C1_guess); %
% update c,d,e,w
c = sol(1);
d = sol(2);
e = sol(3);
w = sol(4);
zf = a + b*yf;
xf = c + d*sin(w*yf+e);
figure(1),plot3(x,y,z,'r.',xf,yf,zf,'k','linewidth',2)
axis tight square
  1 comentario
Mathieu NOE
Mathieu NOE el 16 de Jun. de 2023
hello again
FYI, you can also do a polynomial fit using this excellent FEX submission :
code :
N = readmatrix('QUXIANDIAN.txt');
x = N(:, 1);
y = N(:, 2);
z = N(:, 3);00;
p = polyfitn([x,y],z,3);
% % FEX : https://fr.mathworks.com/matlabcentral/fileexchange/34765-polyfitn?s_tid=ta_fx_results
% % The result can be converted into a symbolic form to view the model more simply.
% % Here I'll use the sympoly toolbox, but there is also a polyn2sym function provided.
% % FEX : https://fr.mathworks.com/matlabcentral/fileexchange/9577-symbolic-polynomial-manipulation?s_tid=srchtitle
% polyn2sympoly(p)
% % ans =
% % 0.0011322*X1^3 + 0.0010727*X1^2*X2 - 0.28262*X1^2 - 0.00058434*X1*X2^2 - 0.10892*X1*X2 + 20.7666*X1 - 0.00022656*X2^3 + 0.062697*X2^2 + 2.5926*X2 - 121.0331
p = p.Coefficients; % get the polynomial coefficients
% create clean smooth x,y data
yf = linspace(min(y),max(y),200);
xf = interp1(y,x,yf);
% smooth a bit xf
xf = smoothdata(xf,'gaussian',10);
% create the polynomial model (z = f(x,y))
zf = p(1)*xf.^3 + p(2)*xf.^2.*yf + p(3)*xf.^2 + p(4)*xf.*yf.^2 + p(5)*xf.*yf + p(6)*xf + p(7)*yf.^3 + p(8)*yf.^2 + p(9)*yf + p(10);
plot3(x,y,z,'r.',xf,yf,zf,'k','linewidth',2)
axis tight square

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by