U-net looses connections, becomes linear rather than U-shaped (unetLayers)
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Allison
el 13 de Jun. de 2023
Comentada: Allison
el 15 de Jun. de 2023
I'm trying to follow the example in Semantic Segmentation of Multispectral Images Using Deep Learning, with the goal of using the pretrained network for tranfer learning to my own semantic segmentation network to use on other terrain images. Unfortunately, my U-net becomes linear, and I cannot figure out why.
When training, the input image size is [256, 256, 6] and there are 18 classes. To keep things simple, I train my network with the data linked in the example and use the function unetLayers (rather than the helper function referenced in the example).
inputTileSize = [256,256,6];
lgraph = unetLayers(inputTileSize, 18, 'EncoderDepth', 4);
plot(lgraph)
I train the network using:
%the mat files and randomPatchExtractionDatastore function come from the
%linked matlab example page above
imds = imageDatastore("train_data.mat",FileExtensions=".mat",ReadFcn=@matRead6Channels);
pxds = pixelLabelDatastore("train_labels.png",classNames,pixelLabelIds);
dsTrain = randomPatchExtractionDatastore(imds,pxds,[256,256],PatchesPerImage=1000);
initialLearningRate = 0.05;
maxEpochs = 5; %low b/c proof of concept, not meant for actual use
minibatchSize = 8;
l2reg = 0.0001;
options = trainingOptions("sgdm",...
InitialLearnRate=initialLearningRate, ...
Momentum=0.9,...
L2Regularization=l2reg,...
MaxEpochs=maxEpochs,...
MiniBatchSize=minibatchSize,...
LearnRateSchedule="piecewise",...
Shuffle="every-epoch",...
GradientThresholdMethod="l2norm",...
GradientThreshold=0.05, ...
Plots="training-progress", ...
VerboseFrequency=20);
net = trainNetwork(dsTrain,lgraph,options);
save("my_multispectralUnet_2.mat", "net");
After training, I load and plot the network. It is linear, rather than U-shaped.
data = load("C:\\Work\\CMFD\\my_multispectralUnet_2.mat");
net = data.net;
plot(layerGraph(net.Layers))
No errors occur while running the above code. What happened to the connections between the encoder and decoder sections?
2 comentarios
mohd akmal masud
el 14 de Jun. de 2023
you lost your connection between encoder and decorder network.
you can edit in network deisgner apps
Respuesta aceptada
Richard
el 15 de Jun. de 2023
This is not being caused by the training, or saving and loading: the network is likely correct at that point. The loss of connection data is just caused by the form of your second call to the plot() function:
plot(layerGraph(net.Layers))
This line is first extracting just the layers as a linear list when it calls net.Layers, then constructing a new LayerGraph which has none of the original connections from net. If you just call:
plot(net)
then you will see the correct network.
Más respuestas (0)
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!