Goodness-of-Fit for a best-fitting distribution? (by using CUPID)
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Sim
el 20 de Jun. de 2023
Comentada: Sim
el 22 de Jun. de 2023
addpath('.../Cupid-master')
pd = makedist('Weibull','a',3,'b',5);
t = truncate(pd,3,inf);
data_trunc = random(t,10000,1);
% Lower cutoff of 3 is known. Start with
% any reasonable guesses for the Weibull parameters--here, 2 & 2.
fittedDist = TruncatedXlow(Weibull2(2,2),3);
% Now estimate the Weibull parameters by maximum likelihood,
% allowing for the truncation.
fittedDist.EstML(data_trunc);
xgrid = linspace(0,100,1000)';
figure
histogram(data_trunc,100,'Normalization','pdf','facecolor','blue')
line(xgrid,fittedDist.PDF(xgrid),'Linewidth',2,'color','red')
xlim([2.5 6])
0 comentarios
Respuesta aceptada
Jeff Miller
el 20 de Jun. de 2023
There are lots of different ways to evaluate the goodness of fit of a given theoretical distribution to a dataset (see, e.g., wikipedia
Cupid has three main "built in" measures, using a chi-square test, a kolmogorov-smirnov test, or simple likelihood of the observations. See section 4.1.5 of the documentation.
5 comentarios
Jeff Miller
el 21 de Jun. de 2023
Editada: Jeff Miller
el 21 de Jun. de 2023
- The log likelihood value is just a number that reflects (to some extent) the fit of the distribution to the data. It cannot be used for hypothesis testing (i.e., you cannot use it to decide whether to reject H0). Instead, it can be used to compare the fits of different distributions--whichever distribution gives the highest likelihood value provides the best fit (in one sense of gof). There was no problem with the likelihood computation in your example; that -256.24 is just the computed value. It really means very little by itself but could be useful when compared with the likelihood values computed for other distributions that you are considering.
- The error you got was in the kstest, which is the third, separate gof measure. The error was that matlab was not able to find the file KolmoJava1_7Class.jar, which should be in the same folder as the file KolmSmir.m. Can you confirm that this jar file is actually in that folder? Here I suspect the error is that I used the Windows path separator '\' in the javaaddpath command inside KolmSmir.m. Change that to filesep as follows and I guess it will work. I will update the file on GitHub.
javaaddpath([mypath filesep obj.sJarFileName]);
3. When you do get kstest running, just check the p value and reject if p<.05. This is a hypothesis testing procedure like the chi-square test, so you can use it for deciding whether to reject H0.
4. If you have more questions about Cupid, it might be better to raise them as issues on GitHub rather than using the MATLAB Answers forum, since these questions are probably too specific to be of general interest.
Más respuestas (0)
Ver también
Categorías
Más información sobre Hypothesis Tests en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!