Normalized Wind Rose Plot help
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Douglas Leaffer
el 22 de Jun. de 2023
Comentada: Star Strider
el 22 de Dic. de 2023
I am trying to generate a normalized (to the max) wind rose plot of air pollutant concentration (UFP) by wind direction. See photo below. A data vector is attached. The simple code: polarplot(N.WD_Deg,N.UFPConc) doesn't generate what I want. Any help is appreciated. Thank you
load winddata.mat
polarplot(N.WD_Deg,N.UFPConc)
4 comentarios
E. Cheynet
el 25 de Jun. de 2023
For the direction with meteorological conventions, you can simply give a new direction newD = 90-oldD
Respuesta aceptada
Star Strider
el 23 de Jun. de 2023
Perhaps something like this —
LD = load('winddata.mat');
N = LD.N;
N.WD_Rad = deg2rad(N.WD_Deg) % Add Radian Variable (For Convenience, Since 'polarplot' Requires It)
[UDir,ix,iv] = unique(N.WD_Rad); % Unique Radian Values & Indices (Sorted)
Concv = accumarray(iv, (1:numel(iv)).', [], @(x)numel(N.UFPConc(x))); % Accumulate Count Values Of 'UFPConc' By Direction (Use 'numel' To Count Occurrences)
[sDir, sConc] = stairs(UDir, Concv); % Return 'stairs' Stepwise Result
figure
polarplot(sDir, sConc) % Plot 'stairs' Stepwise Result
figure
polarplot(UDir, Concv) % Plot Continuous Result
figure
polarhistogram(N.WD_Rad, UDir) % Plot Using 'polarhistogram'
Make appropriate changes to get the result you want.
Using the accumarray function, it is possible to get other parameters of the concentration, such as the mean or median values, as well as standard deviations (std and metrics derived from it, such as confidence intervals) and plot them also using the patch function (although that is more complicated and requires calculating them in polar coordinates and then using the pol2cart function first, and plotting them in Cartesian coordinates), not only the counts.
.
4 comentarios
Más respuestas (1)
Ver también
Categorías
Más información sobre Geographic Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!