How to plot xy, yz and xz plane contour with integration matrix equation
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Pannawat Pongsriassawin
el 25 de Jun. de 2023
Comentada: Pannawat Pongsriassawin
el 17 de Jul. de 2023
I try to follw mt professor to plot contour plot of Rosenthal's equation, and here it my code
clear all
close all
clc
%Constant
rho = 4420; %kg/m^3
Cp = 550; %J/kg?K
T0 = 303.15; %K
A = 0.5; %[Absorbtivity]
k = 7.2; %W/m/K
alpha = 2.96*10^-6; %m^2/s
D = alpha;
P = 100; %W
v = 1; %m/s
u = v;
Tm = 1933; %K
d_laser = 0.01; %mm
r_laser = d_laser/2; %mm
a = r_laser;
p = D/(u*a);
%Define
x = linspace(-0.005,0.025,100);
y = linspace(-0.0005,0.0005,100);
z = linspace(0,0.005,100);
%Normalized
x_nor = x/a;
y_nor = y/a;
z_nor = z/(D*a/u).^0.5;
[x_mesh, y_mesh] = meshgrid(x_nor, y_nor);
[x_mesh, z_mesh] = meshgrid(x_nor, z_nor);
%Calculation
r = (x_mesh.^2 + y_mesh.^2).^0.5;
Ts = A*P/(pi*rho*Cp*sqrt(D*u*a));
T2 = T0 + (A*P)./(2*pi*k*r).*exp(v.*(r+x_mesh)./(2*D));
q = (2*A*P/(pi*a^2))*exp(-2*r.^2/a^2);
syms t
fun = @(t) exp((-z_mesh.^2./(4*t))-((y_mesh.^2+(x_mesh-t).^2)./(4*p.*t+1)))./((4.*p.*t+1).*sqrt(t));
g = int(fun,t,[0 Inf]);
%Plot x'y' plane
figure
contourf(x_mesh, y_mesh, g, [303.15:100:2000])
colorbar
title('x\primey\prime plane')
xlabel('x\prime (m)')
ylabel('y\prime (m)')
xlim([-0.005 0.025])
%Plot y'z' plane
figure
contourf(x_mesh, z_mesh, g, [303.15:100:2000])
title('x\primez\prime plane')
xlabel('x\prime (m)')
ylabel('z\prime (m)')
xlim([-0.005 0.025])
4 comentarios
Torsten
el 26 de Jun. de 2023
Editada: Torsten
el 26 de Jun. de 2023
So g should be a three-dimensional array where the first dimension refers to x, the second dimension refers to y and the third dimension refers to z ? Then, to plot in the xy plane, e.g., you want to choose a value "z(iz)" and plot g(:,:,iz) against the x- and y-array ? That's not what you do in your code.
Respuesta aceptada
Torsten
el 26 de Jun. de 2023
Editada: Torsten
el 26 de Jun. de 2023
clear all
close all
clc
%Constant
rho = 4420; %kg/m^3
Cp = 550; %J/kg?K
T0 = 303.15; %K
A = 0.5; %[Absorbtivity]
k = 7.2; %W/m/K
alpha = 2.96*10^-6; %m^2/s
D = alpha;
P = 100; %W
v = 1; %m/s
u = v;
Tm = 1933; %K
d_laser = 0.01; %mm
r_laser = d_laser/2; %mm
a = r_laser;
p = D/(u*a);
%Define
x = linspace(-0.005,0.025,100);
y = linspace(-0.0005,0.0005,100);
z = linspace(0,0.005,100);
%Normalized
x_nor = x/a;
y_nor = y/a;
z_nor = z/(D*a/u).^0.5;
[x_mesh,y_mesh,z_mesh] = ndgrid(x_nor,y_nor,z_nor);
fun = @(t) exp((-z_mesh.^2./(4*t))-((y_mesh.^2+(x_mesh-t).^2)./(4*p.*t+1)))./((4.*p.*t+1).*sqrt(t));
g = integral(fun,0,Inf,'ArrayValued',true);
figure(1)
iz = 1;
contourf(y_nor,x_nor,squeeze(g(:,:,iz)))
colorbar
figure(2)
iy = 1;
contourf(z_nor,x_nor,squeeze(g(:,iy,:)))
colorbar
figure(3)
ix = 1;
contourf(z_nor,y_nor,squeeze(g(ix,:,:)))
colorbar
Más respuestas (1)
Sarthak
el 27 de Jun. de 2023
Hello Pannawat,
You can plot the contour by using the meshgrid and surf functions which are available in MATLAB.
[X,Y] = meshgrid(x,y); % Create a grid from x and y vectors
z = zeros(size(x, 1)); % Generate z data
surf(x, y, z); % Plot the contour
You can also refer to the MATLAB Answer provided below for further information.
Hope this helps!!
0 comentarios
Ver también
Categorías
Más información sobre Surface and Mesh Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!