INDEX EXCEED NUMBER OF ARAY in GAPSO optimization of simulink model?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello there,
I downloaded a GAPSO zip code to tune simulink parameters. but the following problem appeared even if I tried repeatdly
may anyone help me?'.............
- Index exceeds the number of array elements (100).
- Error in GAPSO (line 54)
- gpop=pop(index);
..nvar=18;
% ub=[6.8 265 49 65 400 60 3.5 17 17 5.5 15 70 4.5 30 15 3.8 16.2 14.2]; %Upper Bound
% lb=[2.5 255 42 40 300 40 1.5 10 12 2.5 11 55 0 18 5 0 8 5]; %Lower Bound
lb.v=-5;
ub.v=5;
popsize=100;
maxiter=500;
pc=0.9;
ncross=2*round((popsize*pc)/2);
pm=1-pc;
nmut=round(popsize*pm);
W=1;
C1=2;
C2=2;
W_RF=0.97;
%% initial population algorithm
tic
emp.Obj=[];
emp.PObj=[];
emp.v=[];
pop=repmat(emp,popsize,1);
for i=1:popsize
pop(i).Obj=lb.var+rand(1,nvar).*(ub.var-lb.var);
pop(i).PObj= STSMC_Parameters(pop(i).Obj);
pop(i).v=0;
end
[value,index]=min([pop.PObj]);
gpop=pop(index); %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Line 54
bpop=pop;
%% main loop algorithm
BEST=zeros(maxiter,1);
MEAN = zeros(maxiter,1);
for iter=1:maxiter
% PSO
PSOpop=PSOfunc(pop,bpop,W,C1,C2,nvar,lb,ub);
% crossover
crosspop=repmat(emp,ncross,1);
crosspop=crossover(crosspop,pop,ncross);
% mutation
mutpop=repmat(emp,nmut,1);
mutpop=mutation(mutpop,pop,nvar,nmut,popsize,lb,ub);
[pop]=[pop;PSOpop;crosspop;mutpop];
[value,index]=sort([pop.PObj]);
pop=pop(index);
gpop=pop(1);
pop=pop(1:popsize);
BEST(iter)=gpop.PObj;
MEAN(iter)=mean([pop.PObj]);
disp([' Iter = ', num2str(iter) ' BEST = ' ,num2str(BEST(iter))])
W=W*W_RF;
end
%% results algorithm
disp([ ' Best Solution = ' num2str(gpop.Obj)])
disp([ ' Best Fitness = ' num2str(gpop.PObj)])
disp([ ' MEAN = ' num2str(mean([pop.PObj]))])
disp([ ' Time = ' num2str(toc)])
figure(1)
plot(BEST(1:iter),'r','LineWidth',1.25);
hold on
plot(MEAN(1:iter),'b-.','LineWidth',1.25);
xlabel('iteration')
ylabel(' best solution')
legend(' BEST, PSO&GA' , 'MEAN, PSO&GA')
%title('PSO&GA')
%plot(BEST,'r')
%xlabel('Iteration')
%ylabel('Fitness')
%egend('BEST')
%title('GAPSO')
0 comentarios
Respuestas (1)
Samay Sagar
el 3 de Jul. de 2023
The error message suggests that the class names for your SVM classification are not found in the input labels. In your code, you are using the fitcsvm function with the 'ClassNames' parameter set to [1, 2], which implies that your class labels should be 1 and 2.However, it seems that your trainClusters variable contains cluster indices rather than class labels. To resolve this issue, you can convert the cluster indices to class labels before fitting the SVM model.
0 comentarios
Ver también
Categorías
Más información sobre Get Started with Optimization Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!