How to sample single values from field in *non-scalar structure array*?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Manuel A. Diaz
el 25 de Jul. de 2023
Comentada: Manuel A. Diaz
el 26 de Jul. de 2023
Hello Matlab experts,
I'm working on the optimization of some code following the Profiler's measurements.
Here, one main bottleneck is the sampling of an individual element on each of the fields contained within the struct array.
For context, let's consider that a non-scalar struct array with uniform mat sparse fields is built as
A = repmat(struct('mat',speye(3)),10,1);
for k = 1:10
A(k).mat = A(k).mat * k;
end
For the sake of simplicity, I'm interested in sampling each field at indexes (i,j) = (2,2) as
col = zeros(10,1);
for k = 1:10
col(k) = A(k).mat(2,2);
end
So that for the next step, I report each sampled point into a column vector.
Thus the expected output is:
>> col
col =
1
2
3
4
5
6
7
8
9
10
Question: is there a much better (hopefully faster) way to do this? (mainly getting rid of the for-loop)
Disclaimer: I have tried converting this struct array into flat array, [A.mat], or into an array of cells, {A.mat}, but I run into the trouble of the sparse nature of the fields (Get warnings with SPFUN). I'm sure there must be a clever way to do this with arrayfun() or cellfun() but the solution eludes me.
8 comentarios
Bruno Luong
el 26 de Jul. de 2023
Editada: Bruno Luong
el 26 de Jul. de 2023
You might take a look at this FEX by @Matt J
Respuesta aceptada
Manuel A. Diaz
el 26 de Jul. de 2023
7 comentarios
Bruno Luong
el 26 de Jul. de 2023
Editada: Bruno Luong
el 26 de Jul. de 2023
The speed up depends on the size of mat. Less than 100, the speed up is real; beyond that the flatten runtime increases with the size where-as the for-loop time is constant, independent of the size of the matrix, as showed,in this test script.
matsize = 2.^(1:12);
ntest = length(matsize);
t1 = zeros(1, ntest);
t2 = zeros(1, ntest);
t3 = zeros(1, ntest);
for i = 1:ntest
A = repmat(struct('mat',speye(matsize(i))),10000,1);
for k = 1:numel(A)
A(k).mat = A(k).mat * k;
end
t1(i) = timeit(@() forloop(A), 1);
t2(i) = timeit(@() flatA(A), 1);
t3(i) = timeit(@() afun(A), 1);
end
close all
semilogx(matsize, t1)
hold on
semilogx(matsize, t2)
semilogx(matsize, t3)
xlabel('sizemat')
ylabel('time [s]')
legend('for loop', 'flat mat', 'arrayfun')
function col = forloop(A)
n = numel(A);
col = zeros(n,1);
for k = 1:n
col(k) = A(k).mat(2,2);
end
end
function col = afun(A)
col = arrayfun(@(s) full(s.mat(2,2)), A);
end
function col = flatA(A)
n = numel(A);
% Get Data sizes
m = size(A(1).mat,1); % because we have uniformly sized fields
% Compute
A_flat = [A.mat]; % Flatten the structure fields
col = transpose(A_flat(2,2 + 0:m:m*n));
end
Más respuestas (1)
Bruno Luong
el 25 de Jul. de 2023
Editada: Bruno Luong
el 25 de Jul. de 2023
Just shorter code, not necessary better.
A = repmat(struct('mat',speye(3)),10,1);
for k = 1:10
A(k).mat = A(k).mat * k;
end
col = arrayfun(@(s) full(s.mat(2,2)), A)
Ver también
Categorías
Más información sobre Matrices and Arrays en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


