2nd order non-linear differential equation

1 visualización (últimos 30 días)
DJOULDE Aristide
DJOULDE Aristide el 22 de Ag. de 2023
Editada: Florian Bidaud el 22 de Ag. de 2023
I have a heat transfer problem and I need to derive an 2nd order non-linear differential equation.
After replacing all the constants with A and B. My equation looks like this.
T'' + A(T)^4+ B= 0
Boundery conditions are T'(x=0)=C(T(0)-D), and T'(x=L)=E(D-T(L))
A,B,C,D,E are constants
And I need to solve for T(x).
Thank you in advance for your help.

Respuestas (1)

Florian Bidaud
Florian Bidaud el 22 de Ag. de 2023
Editada: Florian Bidaud el 22 de Ag. de 2023
If you have symoblic toolbox,
That would give something like that :
syms y(t)
Dy = diff(y);
ode = diff(y,t,2) + A*y^4 + B == 0
cond1 = Dy(0) == C*(y(0)-D); % Correction made after Torsten comment T(0) --> y(0)
cond2 = Dy(L) == E*(D-y(L)); % Correction made after Torsten comment T(L) --> y(L)
conds = [cond1 cond2];
ySol(x) = dsolve(ode,conds);
ySol = simplify(ySol)
  2 comentarios
Torsten
Torsten el 22 de Ag. de 2023
cond1 = Dy(0) == C*(y(0)-D);
cond2 = Dy(L) == E*(D-y(L));
ySol(t) = dsolve(ode,conds);
instead of
cond1 = Dy(0) == C*(T(0)-D);
cond2 = Dy(L) == E*(D-T(L));
ySol(x) = dsolve(ode,conds);
Florian Bidaud
Florian Bidaud el 22 de Ag. de 2023
@Torsten Indeed, thank you for spotting that

Iniciar sesión para comentar.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by