Regression Learner App - relative weights of variables
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
lauzof
el 22 de Ag. de 2023
Respondida: lauzof
el 30 de Ag. de 2023
Hello everyone,
I've been using the Regression Learner App to train a model. Can anyone tell me how can I check the relative weights that the model assigns to every predictor variable?
thanks a lot,
best,
Laura
0 comentarios
Respuesta aceptada
Kevin Holly
el 22 de Ag. de 2023
Assuming that you exported your trained model as the variable trainedModel and that you have a linear model, you can access a table that has the coefficient estimates of the predictor variables as such:
trainedModel.LinearModel.Coefficients
You could extract those values by typing:
trainedModel.LinearModel.Coefficients.Estimate
You could also determine which of the predictors seemed to have the most impact by using something like LIME (Local Interpretable Model-Agnostic Explanations).
r=lime(trainedModel.predictFcn,train_data,'type','Regression');
qp=train_data(1,:);
r2=fit(r,qp,3);
plot(r2);
3 comentarios
Kevin Holly
el 23 de Ag. de 2023
Try this:
load('TrainedRegressionModel.mat')
load('tbl_training.mat')
r = lime(trainedModel.RegressionGP,tbl_training,'Type','regression');
qp=tbl_training(1,:); % This is the query point.
r2=fit(r,qp,4); % You had 4 predictors, so I changed 3 to 4
plot(r2);
r = lime(trainedModel.RegressionGP,tbl_training,'Type','regression');
qp=tbl_training(10,:); % This is the query point.
r2=fit(r,qp,4); % You had 4 predictors, so I changed 3 to 4
plot(r2);
Más respuestas (1)
Ver también
Categorías
Más información sobre Gaussian Process Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!