Need help in using trapz to integrate a definite function

34 visualizaciones (últimos 30 días)
Emmanuel Sarpong
Emmanuel Sarpong el 31 de Ag. de 2023
Comentada: Emmanuel Sarpong el 31 de Ag. de 2023
I have a simple function, A2 to integrate (from x = 3 um to 5 um) using the trapezoidal method so I used the "trapz" but it didn't work. I would be grateful if someone could assist. My code is below. Thank you in advance.
clear all
c=3*10^8; % speed of light in vaccum
h=6.626*10.^-34; % Planck constant
k=1.38*10.^-23; % Boltzmann constant
T=700; % Temperatures in Kelvin
x=(0.0:0.01:50).*1e-6; % in meters
A2=(2*h*c*c)./((x.^5).*(exp((h.*c)./(k.*T.*x))-1));
q=trapz(A2,x,3,5)
Error using trapz
Too many input arguments.

Respuestas (3)

the cyclist
the cyclist el 31 de Ag. de 2023
trapz is probably not the best way to do this. You could use integral instead
c=3*10^8; % speed of light in vaccum
h=6.626*10.^-34; % Planck constant
k=1.38*10.^-23; % Boltzmann constant
T=700; % Temperatures in Kelvin
A2 = @(x) (2*h*c*c)./((x.^5).*(exp((h.*c)./(k.*T.*x))-1));
% Unclear what you really want for x values. Here are two versions.
q1 = integral(A2,3.e-6,5.e-6)
q1 = 1.2934e+03
q2 = integral(A2,3,5)
q2 = 5.6099e-14

the cyclist
the cyclist el 31 de Ag. de 2023
Did you read the documentation for the trapz function? It expects either two or three inputs, not the four you provided.
I am going to guess that your intention is to only integration your A2 function in the range x in (3,5). In that case, you could do
c=3*10^8; % speed of light in vaccum
h=6.626*10.^-34; % Planck constant
k=1.38*10.^-23; % Boltzmann constant
T=700; % Temperatures in Kelvin
x=(0.0:0.01:50).*1e-6; % in meters
A2=(2*h*c*c)./((x.^5).*(exp((h.*c)./(k.*T.*x))-1));
inRange = (x >= 3) & (x<=5);
q=trapz(x(inRange),A2(inRange))
q = 0
That's probably not the result you are expecting, but I am not going to debug this too much, since it is not actually clear what you are trying to achieve. Please explain more.
  2 comentarios
Emmanuel Sarpong
Emmanuel Sarpong el 31 de Ag. de 2023
Hi cyclist, you're right! that's not the answer I am expecting. Thank you anyway.
The function decribes a curve and I want to find the area under a part of the curve from x =3 to 5 using the trapezoidal method of integration. Thanks
the cyclist
the cyclist el 31 de Ag. de 2023
Do you mean x = 3, or x = 3e-6?

Iniciar sesión para comentar.


Torsten
Torsten el 31 de Ag. de 2023
Editada: Torsten el 31 de Ag. de 2023
Maybe you mean
clear all
c=3*10^8; % speed of light in vaccum
h=6.626*10.^-34; % Planck constant
k=1.38*10.^-23; % Boltzmann constant
T=700; % Temperatures in Kelvin
x=(0.0:0.01:50).*1e-6; % in meters
A2=(2*h*c*c)./((x.^5).*(exp((h.*c)./(k.*T.*x))-1));
%q=trapz(A2,x,3,5)
idx = x>=3e-6 & x<=5e-6;
x = x(idx);
A2 = A2(idx);
plot(x,A2)
trapz(x,A2)
ans = 1.2934e+03
6e8*2e-6 % Approximate value of the integral
ans = 1200
  2 comentarios
Emmanuel Sarpong
Emmanuel Sarpong el 31 de Ag. de 2023
Hi Torsten, the function, A2 plots a curve and I want to find the area under a part of the curve from x = 3 to 5 using the trapezoidal method of integration. I hope this helps. Thanks for your help anyway
Torsten
Torsten el 31 de Ag. de 2023
Editada: Torsten el 31 de Ag. de 2023
If you define x as
x=(0.0:0.01:50).*1e-6; % in meters
and you evaluate A2 with this vector, you cannot determine the value of the integral between 3 and 5, but only between 3e-6 and 5e-6. And that's what the code above does.

Iniciar sesión para comentar.

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by