一次式によるベースライン補正について
57 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
KT
el 6 de Sept. de 2023
Comentada: KT
el 21 de Sept. de 2023
グラフで得られているx軸0-36までの平均値は変えずに、
最小二乗近似法で得られたオレンジ点線の直線(y = -1.97x+116.08)と「同じ傾きで右肩上がりの直線」を求め、その直線に従いy軸を変化させるにはどのようにしたらいいでしょうか?
もしくは、
x軸が大きくなるにつれて、y軸が高いところを低く、低いところを高く、平均値は変えず全体的に右肩上がりに補正できる方法はないでしょうか?
スペクトルではないので、ベースライン補正なのか分かりませんが、簡易的な一次式で補正できれば考えています。
0 comentarios
Respuesta aceptada
Hiro Yoshino
el 9 de Sept. de 2023
面積の補正が必用ということで、いただいたコードを少し変えてみました。
利便性を考慮して最初のデータでも動作するようにしました。y が before, y2 が after です。
% Original data
x = (1:36)';
y = [0;134.7407;205.9038;210.5938;148.8053;101.2817;94.7168;89.2617;92.2141;100.3457;103.1461;98.5113;72.87;72.7713;71.103;60.4682;53.5974;58.5912;51.7347;51.1305;50.0097;44.1407;49.0088;45.1054;52.8028;49.5283;68.3816;58.6178;75.5166;67.1995;82.3074;84.7901;103.3022;165.2237;0;0];
plot(x,y);
title("元のデータ");
トレンド除去
idx = find(y>0); % y>0 のインデックス
idx0 = find(y<=0); % y<=0 のインデックス
d = detrend(y(idx),1); % y>0 だけに限定してトレンド除去後を計算
% 全てのデータポイントでトレンド除去を考慮
y2 = zeros(size(y));
y2(idx) = d;
y2(idx0) = y(idx0); % y<=0 の部分には元のデータを保持
トレンド除去後の面積補正
% 面積の補正量
sComp = mean(y(idx)-y2(idx))
y2(idx) = y2(idx) + sComp; % 面積補正後
% 比較
figure;
tiledlayout(2,2);
nexttile
scatter(x,y,'b');
lsline;
title("Before と LS線")
nexttile
scatter(x,y2,'m');
lsline
title("After と LS線, '0'のためLS線が下がる");
nexttile
plot(x,y,x,y2);
title("2つの比較");
nexttile
plot(x,y-y2);
title(sprintf("面積が等しい証明: mean(y-y2)=%1.3f",mean(y-y2)));
legend("y-y2");
Más respuestas (1)
Hiro Yoshino
el 7 de Sept. de 2023
回転角を考えて、全体のデータを回転させると良いかと思います。
元のデータ
x = 0:0.1:36;
y = -1.97*x + 116.08;
plot(x,y,'b:');
回転させます
theta = 2 * (pi/2 - atan(-1.97)); % 回転角を計算
R = [cos(theta) -sin(theta); sin(theta) cos(theta)]; % 回転行列
center = repmat([mean(x); mean(y)], 1, length(x)); % 中心座標
s = [x;y] - center; % 原点に移動
s0 = R*s; % 回転
x0y0 = s0 + center; % 元に戻す
plot(x,y,'b:',x0y0(1,:),x0y0(2,:),'r:');
7 comentarios
Hiro Yoshino
el 8 de Sept. de 2023
ベースライン補正 で何となくどんなことをされたいのかは分かりました。
(校正のことなのかなと理解しました)
その上で、ベースライン補正で利用されるアルゴリズムなどあれば、ご紹介いただけると取り掛かり易いです。
Ver también
Categorías
Más información sobre Timing and presenting 2D and 3D stimuli en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!