Solving ODE using Deep Learning
    12 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Mohd Jamil Mohamed Mokhtarudin
 el 12 de Sept. de 2023
  
    
    
    
    
    Respondida: Antoni Woss
    
 el 14 de Sept. de 2023
            Hi all,
I am trying to understand how to solve ODE using Deep Learning, and code it using MATLAB, based on this tutorial:
When I modified the code to solve a Lotka-Volterra model:
I could not get the loss to converge. I think it is because the tutorial uses sgdmupdate optimizer. If I want to change it to adam optimizer, how can I change the code?
0 comentarios
Respuestas (1)
  Antoni Woss
    
 el 14 de Sept. de 2023
        To use the adam optimizer in this custom training loop example, you can follow the example set out in the documentation page for the adamupdate function - https://uk.mathworks.com/help/deeplearning/ref/adamupdate.html. 
Note that the adamupdate function has some different required input arguments and return arguments so you will need to map the differences to the ODE example you are trying to solve. For example, initializing empty averageGrad and averageSqGrad outside the custom training loop so that you can update it at each call to adamupdate. Here is a snippet just showing where these quantites would be used.
averageGrad = [];
averageSqGrad = [];
...
[net,averageGrad,averageSqGrad] = adamupdate(net,gradients,averageGrad,averageSqGrad,iteration);
0 comentarios
Ver también
Categorías
				Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!