How to detect data that does not follow a bell curve?

1 visualización (últimos 30 días)
Miguel
Miguel el 14 de Sept. de 2023
Comentada: Miguel el 14 de Sept. de 2023
Hello everyone!
I have significantly large dataset and I need to detect which data does not follow a gaussian distribution or bell curve (see screenshots). I have tried using several tests such as kstest, lillietest, etc but for some reason, these tests do not work for me. I have tried using the histcounts function for visualizing the data distribution that you see in the screenshots. Any insights would be appreciated.
[N1,edges1,bin1] = histcounts(normal);
plot(N1)
[N2,edges2,bin2] = histcounts(abnormal);
plot(N2)

Respuesta aceptada

Sam Chak
Sam Chak el 14 de Sept. de 2023
Not sure if you can try it this way to compare the R-square value. Data that follows the bell curve tends to have a high R-squared value close to 1. Data that does not follow the bell curve usually have relatively low R-squared values.
load('normal.mat');
[N1,edges1,bin1] = histcounts(normal);
x1 = 1:length(N1);
[fitobject1, gof1] = fit(x1', N1', 'gauss1')
fitobject1 =
General model Gauss1: fitobject1(x) = a1*exp(-((x-b1)/c1)^2) Coefficients (with 95% confidence bounds): a1 = 3609 (3563, 3654) b1 = 45.27 (45.16, 45.38) c1 = 10.65 (10.5, 10.81)
gof1 = struct with fields:
sse: 8.9523e+05 rsquare: 0.9939 dfe: 189 adjrsquare: 0.9939 rmse: 68.8235
load('abnormal.mat');
[N2,edges2,bin2] = histcounts(abnormal);
x2 = 1:length(N2);
[fitobject2, gof2] = fit(x2', N2', 'gauss1')
fitobject2 =
General model Gauss1: fitobject2(x) = a1*exp(-((x-b1)/c1)^2) Coefficients (with 95% confidence bounds): a1 = 1862 (1450, 2274) b1 = 11.65 (-3.404, 26.7) c1 = 33.07 (15.12, 51.03)
gof2 = struct with fields:
sse: 9.6821e+07 rsquare: 0.3657 dfe: 99 adjrsquare: 0.3529 rmse: 988.9337
subplot(211)
plot(N1), grid on, title('N_{1} follows Bell curve')
subplot(212)
plot(N2), grid on, title('N_{2} does not follows Bell curve')
  1 comentario
Miguel
Miguel el 14 de Sept. de 2023
Hi Sam,
Thank you so much for your reply. I highly appreciate your help. This worked perfectly for my dataset. Have a nice day!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Spline Postprocessing en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by