Split non-bijective function into two bijective regions

3 visualizaciones (últimos 30 días)
Dan
Dan el 3 de Oct. de 2023
Comentada: Torsten el 3 de Oct. de 2023
I have a model which generates a large number of samples (i.e. a set of x values and a set of y values). The output roughly follows the shape of the curve pictured, so that there are two y values for each x value. The data is not sorted by x or y.
I would like to split this dataset into two bijective datasets, representing points above and below the marked X. (This will then allow me to interpolate between points on the upper portion of the curve, where otherwise interpolation would bounce up and down between the two parts of the curve.)
My initial approach was to find the co-ordinates of the marked X, xX and yX, and assign the two datasets according to y > yX and y < yX. However, there are a handful of points on the bottom portion of the curve that can sometimes have y > yX, so this doesn't work.
Can anyone suggest a potential solution to this problem?
  4 comentarios
Bruno Luong
Bruno Luong el 3 de Oct. de 2023
Please share your data
Dan
Dan el 3 de Oct. de 2023
Thanks for the comments.
Dyuman: The marked point X has an x co-ordinate which is the maximum value of x (i.e. max(x))
Bruno: This is not my actual data but is a simple version that has the essence of the problem. My approach would put the points (1,2) and (2.5,1.8) into the top half of the curve
x = [4;2;3;6;6.5;4.5;1;1.5;3.5;2.5;5;6.2;2.8;6.3];
y = [5.5;6.5;1;4;1.5;1;2;7;6;1.8;5;1;6.2;3];
scatter(x,y)

Iniciar sesión para comentar.

Respuesta aceptada

Bruno Luong
Bruno Luong el 3 de Oct. de 2023
Editada: Bruno Luong el 3 de Oct. de 2023
x = [4;2;3;6;6.5;4.5;1;1.5;3.5;2.5;5;6.2;2.8;6.3];
y = [5.5;6.5;1;4;1.5;1;2;7;6;1.8;5;1;6.2;3];
% TSP to order the data, See here
% https://www.mathworks.com/help/optim/ug/travelling-salesman-problem.html
nStops = length(x);
idxs = nchoosek(1:nStops,2);
% Bruno comment: you might normalize x and y before comuting dist if they have different units
dist = hypot(x(idxs(:,1)) - x(idxs(:,2)), ...
y(idxs(:,1)) - y(idxs(:,2)));
lendist = length(dist);
G = graph(idxs(:,1),idxs(:,2));
Aeq = spalloc(nStops,length(idxs),nStops*(nStops-1)); % Allocate a sparse matrix
for ii = 1:nStops
whichIdxs = (idxs == ii); % Find the trips that include stop ii
whichIdxs = sparse(sum(whichIdxs,2)); % Include trips where ii is at either end
Aeq(ii,:) = whichIdxs'; % Include in the constraint matrix
end
beq = 2*ones(nStops,1);
intcon = 1:lendist;
lb = zeros(lendist,1);
ub = ones(lendist,1);
opts = optimoptions('intlinprog','Display','off');
[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,[],[],Aeq,beq,lb,ub,opts);
x_tsp = logical(round(x_tsp));
Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2),[],numnodes(G));
%%
[~,minloc]=min(x);
[~,maxloc]=max(x);
p1 = Gsol.shortestpath(minloc,maxloc);
A=Gsol.adjacency;
A(p1(1),p1(2))=0;
A(p1(2),p1(1))=0;
Gtmp = graph(A);
p2 = Gtmp.shortestpath(minloc,maxloc);
p2(1) = [];
x1 = x(p1); y1 = y(p1);
x2 = x(p2); y2 = y(p2);
figure()
plot(x1,y1,'Linewidth',2)
hold on
plot(x2,y2,'Linewidth',2)
  4 comentarios
Bruno Luong
Bruno Luong el 3 de Oct. de 2023
The challenge is reorder the data, selecting the turning point is easy.
Torsten
Torsten el 3 de Oct. de 2023
You are right (as always) - I didn't read the question carefully.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Spline Postprocessing en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by