セマンティックセグメ​ンテーションを使った​転移学習と、その学習​データをもとにテスト​するにはどうすればよ​いですか?

3 visualizaciones (últimos 30 días)
takai
takai el 12 de Oct. de 2023
Editada: Naga el 18 de Oct. de 2023
コンクリートののひび割れ画像をセマンティックセグメンテーションを用い、学習し、テストさせ、ひび割れがある個所、ない箇所を色分けするスクリプトが知りたい。

Respuestas (1)

Naga
Naga el 18 de Oct. de 2023
Editada: Naga el 18 de Oct. de 2023
Hi 大暉 高井,
I understand you want to use semantic segmentation to color-code areas with cracks and areas without cracks in concrete images, please follow the below steps to achieve that:
  1. MATLAB provides pre-trained models for semantic segmentation, such as DeepLabv3+ or SegNet, load one of these pre-trained models using the deeplabv3plusLayers or segnetLayers functions.
  2. Depending on the model you choose replace the last layers of the pre-trained model with new layers for your specific task.
  3. Modify the number of output classes to match your requirement (e.g., 2 classes for crack and non-crack).
  4. Use the trainNetwork function to train the customized model using the training dataset.
  5. Fine tune the parameters such as the number of epochs, learning rate, and mini-batch size.
  6. Use the trained model to predict the segmentation masks for the testing dataset.
For more understanding about semantic segmentation please refer to the following documentations:
  1. Semantic segmentation: https://www.mathworks.com/help/vision/semantic-segmentation.html?s_tid=CRUX_lftnav
  2. Examples: https://www.mathworks.com/help/vision/examples.html?category=semantic-segmentation&s_tid=CRUX_topnav
Hope this helps!

Categorías

Más información sobre Genetic Algorithm en Help Center y File Exchange.

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!