Borrar filtros
Borrar filtros

Finding Coefficients for the particular solution

4 visualizaciones (últimos 30 días)
Tashanda Rayne
Tashanda Rayne el 18 de Oct. de 2023
Comentada: Walter Roberson el 22 de Oct. de 2023
I have this code for the homogenous portion of the equation but I need help trying to find the particular part. I am trying to avoid using any ODE functions
%Equation: y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
format long
Coefa = 1;
Coefb = 3;
Coefc = 3.25;
x0 = 0; x1 = 25; Yin = -25, Yder = 4,
Yin =
-25
Yder =
4
B = [Yin,Yder]; N = 1000;
x = linspace(0,25,N);
y = zeros(1,N);
R = zeros(1,2);
R = SecondOderODE1(Coefa,Coefb, Coefc);
Unrecognized function or variable 'SecondOderODE1'.
if abs(R(1)-R(2))>=1/10^6
A = [exp(R(1)*x0),exp(R(2)*x0); exp(x0*R(1))*R(1), R(2)*exp(x0*R(2))];;
C = B./A
for i = 1:1:N
y(i) = real(C(1)*x(i)^R(1)+C(2)*x(i)^R(2));
figure(1)
plot (x,y)
xlabel ('x')
ylabel('y')
grid on
end
else
A = [x0^R(1), R(1)*x0^(R(1)-1); x0^R(2), log(x0)*(x0^(R(2)-1))];
C = B./A
for i = 1:1:N
y(i) = real(C(1)*x(i)^R(1)+log(abs(x(i)))*C(2)*x(i)^R(2));
end
end
figure(1)
plot(x,y)
xlabel ('x')
ylabel('y')
grid on

Respuesta aceptada

David Goodmanson
David Goodmanson el 18 de Oct. de 2023
Editada: David Goodmanson el 18 de Oct. de 2023
Hi Tashanda,
let u and v be 2x1 vectors with the coefficient of cos as first element, coefficient of sine as second element, and M*u = v.
M = -eye(2,2) +3*[0 1;-1 0] + 3.25*eye(2,2) % since c'= -s s'= c
v = [3;-3/2] % right hand side
u = M\v % particular solution
u =
0.8000 % .8 cos(x) + .4 sin(x)
0.4000
  2 comentarios
Walter Roberson
Walter Roberson el 18 de Oct. de 2023
This matches the main part of the symbolic solution, without the constants of integration terms needed to account for any boundary conditions.
David Goodmanson
David Goodmanson el 18 de Oct. de 2023
Yes it is just the particular solution, as requested by the OP.

Iniciar sesión para comentar.

Más respuestas (1)

Walter Roberson
Walter Roberson el 18 de Oct. de 2023
% y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
syms y(x)
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 3*dy + 3.25 * y == 3*cos(x) - 1.5*sin(x)
eqn(x) = 
sympref('abbreviateoutput', false);
sol = dsolve(eqn)
sol = 
simplify(sol, 'steps', 50)
ans = 
I am not sure if using dsolve counts as an "ode function" or not?
  4 comentarios
Tashanda Rayne
Tashanda Rayne el 22 de Oct. de 2023
The initial conditions:
y(0) = -25
y'(0) = 4
Walter Roberson
Walter Roberson el 22 de Oct. de 2023
% y'' +3y'+3.25y = 3cos(x)-1.5sin(x)
syms y(x)
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 3*dy + 3.25 * y == 3*cos(x) - 1.5*sin(x)
eqn(x) = 
sympref('abbreviateoutput', false);
ic = [y(0) == -25, dy(0) == 4]
ic = 
sol = dsolve(eqn, ic)
sol = 
sol = simplify(sol, 'steps', 50)
sol = 
%cross-check
subs(eqn, y, sol)
ans(x) = 
simplify(ans)
ans(x) = 
symtrue
%numeric form
[eqs,vars] = reduceDifferentialOrder(eqn,y(x))
eqs = 
vars = 
[M,F] = massMatrixForm(eqs,vars)
M = 
F = 
f = M\F
f = 
odefun = odeFunction(f,vars)
odefun = function_handle with value:
@(x,in2)[in2(2,:);in2(2,:).*-3.0-in2(1,:).*(1.3e+1./4.0)+cos(x).*3.0-sin(x).*(3.0./2.0)]
initConditions = [-25 4];
ode15s(odefun, [0 10], initConditions)
So the function stored in odefun is what you would need to to process the system numerically
odefun(x, [y(x); dy(x)])
ans = 

Iniciar sesión para comentar.

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by