Fit ellipsoid to (x,y,z) data

11 visualizaciones (últimos 30 días)
Geetartha Dutta
Geetartha Dutta el 25 de Oct. de 2023
Comentada: Geetartha Dutta el 1 de Nov. de 2023
I have a 3D dataset having (x,y,z) coordinates. The x and y values are equally spaced (regular grid). How can I fit an ellipsoid of the form (x-p)^2/a^2 + (y-q)^2/b^2 + (z-r)^2/c^2 , where (p,q,r) are the coordinates of the center of the ellipsoid, and a,b,c are the radii?
  7 comentarios
Matt J
Matt J el 26 de Oct. de 2023
Editada: Matt J el 26 de Oct. de 2023
I know that there seems to be two modes in the data
Looks like a lot more than that. I can't tell which is supposed to be the "greater" mode. In any case, if you want a good fit in a particular region, you will have to prune the data to exclude the other regions.
Geetartha Dutta
Geetartha Dutta el 26 de Oct. de 2023
Attached is the pruned data. It would be great if I could get a reasonably good fit to this data.

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 26 de Oct. de 2023
Editada: Matt J el 26 de Oct. de 2023
I'm finding that a decent fitting strategy is to first fit with a Gaussian, but then use the parameters of the Gaussian to construct an ellipsoid hemisphere. For the Gaussian fitting, I used gaussfitn, which is downloadable from,
load xyz
[maxval,i]=max(z(:));
mu0=[x(i);y(i)];
D0=min(z(:));
opts={'FunctionTolerance',1e-14, 'OptimalityTolerance',1e-14, 'StepTolerance',1e-14};
G0={D0,maxval-D0,mu0,100*eye(2)};
LB={0,0,[],[]};
UB={D0,maxval,[],[]};
G = gaussfitn([x(:),y(:)],z(:),G0,LB,UB,opts{:});
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
%Disaply surfaces
[Zg,Ze]=getSurf(x,y,G);
surf(x,y,z,'FaceAlpha',0.5,'FaceColor','b');
surface(x,y,Ze,'FaceColor','r'); xlabel X, ylabel Y
legend('Raw Data','Fit')
function [Zg,Ze]=getSurf(x,y,G)
[D,A,mu,sig]=deal(G{:});
sz=size(x);
xy=[x(:),y(:)]'-mu;
Zg=D+A*exp(-0.5*sum( (sig\xy).*xy,1)); Zg=reshape(Zg,sz); %Gaussian Fit
Ze=D+A*sqrt(1-sum( (sig\xy).*xy)); Ze=reshape(Ze,sz); %Ellipsoid Fit
end
  6 comentarios
Matt J
Matt J el 31 de Oct. de 2023
Editada: Matt J el 31 de Oct. de 2023
You should set the complex values to NaN. They correspond to (x,y) outside the footprint of the ellipsoid.
Geetartha Dutta
Geetartha Dutta el 1 de Nov. de 2023
I see, thanks!

Iniciar sesión para comentar.

Más respuestas (2)

Torsten
Torsten el 25 de Oct. de 2023

Matt J
Matt J el 26 de Oct. de 2023
Editada: Matt J el 26 de Oct. de 2023
Using quadricFit from,
%%%%%%%%%%%Fake input data
[X,Y,Z] = sphere;
[X,Y,Z]=deal(1+40*X, 2+20*Y,3+30*Z); %stretch into an ellipsoid
surf(X,Y,Z); axis equal
%%%%%%%%%%% Do the fit
XYZ=[X(:),Y(:),Z(:)]';
[XYZ,T]=quadricFit.homogNorm(XYZ);
X=XYZ(1,:).';
Y=XYZ(2,:).';
Z=XYZ(3,:).';
e=+ones(size(X,1),1);
M= [X.^2, [], [], X, ...
Y.^2, [], Y, ...
Z.^2 Z, ...
e];
coeffs=quadricFit.mostnull(M);
ABCDEFGHIJ=zeros(1,10);
ABCDEFGHIJ([1,4,5,7:10])=coeffs;
ABCDEFGHIJ=num2cell(ABCDEFGHIJ);
[A,B,C,D,E,F,G,H,I,J]=deal(ABCDEFGHIJ{:});
Q=[A, B, C; %D
0 E, F; %G
0 0 H];%I
%J
Q=Q/2+Q.'/2;
W=T.'*[Q,[D;G;I]/2;[D,G,I]/2,J]*T;
Q=W(1:3,1:3);
x0=-Q\W(1:3,end);
T=eye(4); T(1:3,4)=x0;
W=T.'*W*T; W=-W/W(end);
rad=sqrt(1./diag(W(1:3,1:3)));
[a,b,c]=deal(rad(1),rad(2),rad(3)) %ellipsoid radii
a = 40.0000
b = 20
c = 30.0000
[p,q,r]=deal(x0(1),x0(2),x0(3)) %ellipsoid center coordinates
p = 1.0000
q = 2.0000
r = 3.0000
  2 comentarios
Geetartha Dutta
Geetartha Dutta el 26 de Oct. de 2023
I tried the above code using my data, and it gives complex values for a and b. I am not sure why.
Matt J
Matt J el 26 de Oct. de 2023
Attach your xyz data in a .mat file, so it can be examined.

Iniciar sesión para comentar.

Categorías

Más información sobre Curve Fitting Toolbox en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by