how can I predicate output for u data size 33 by 33 where inputs u for time steps t=10, t=15, and t=20 given as input in Convolutional Neural Network ,a sample code for it .p
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
praveen kumar
el 31 de Oct. de 2023
Comentada: praveen kumar
el 16 de Nov. de 2023
% Define your data and model parameters
num_samples = 1; % Replace with the actual number of samples
num_channels = 1; % Number of channels (assuming grayscale)
height = 33; % Replace with the height of your data (e.g., 33)
width = 33; % Replace with the width of your data (e.g., 33)
num_classes = 3; % Number of classes in your classification task
% Generate random input data for U at t=10, t=15, and t=20
X_train_t10 = rand(height, width, num_channels, num_samples); % Replace with your data generation
X_train_t15 = rand(height, width, num_channels, num_samples); % Replace with your data generation
X_train_t20 = rand(height, width, num_channels, num_samples); % Replace with your data generation
% Concatenate the data for different time steps
X_train = cat(4, X_train_t10, X_train_t15, X_train_t20);
% Generate random output data for U at t=25 (classification task)
y_train = randi([1, num_classes], [1, num_samples]); % Replace with your data generation
% Define category names
category_names = {'Category1', 'Category2', 'Category3'};
% Convert numeric data to categorical using category names
y_train = categorical(y_train, 1:num_classes, category_names);
% Create the 2D CNN model
model = create_cnn_model(height, width, num_channels, num_classes); % Define the function create_cnn_model
% Compile the model
model = compile_cnn_model(model, X_train, y_train); % Pass X_train and y_train as arguments
% Train the model (you can use this random data for training, but it's usually real data)
model = train_cnn_model(model, X_train, y_train);
% Make predictions
X_test = rand(height, width, num_channels, num_samples); % Replace with your data generation for testing
predictions = predict_cnn_model(model, X_test);
% Rest of your code remains the same...
% Rest of your code remains the same...
% Evaluate the model
y_test = load_test_target_values(); % Implement this function for test target values
evaluation_result = evaluate_cnn_model(model, X_test, y_test);
% Plot the actual vs. predicted data
figure;
plot(y_test, predictions, 'o');
xlabel('Actual U values at t=40');
ylabel('Predicted U values at t=40');
title('Actual vs. Predicted U values');
% Plot 2D images of input data
figure;
for i = 1:min(16, num_samples) % Plot the first 16 samples
subplot(4, 4, i);
imshow(X_train(:,:,1,i), []);
title(['Sample ', num2str(i)]);
end
sgtitle('Input Data Images');
% Plot statistical analysis plots (e.g., histograms)
figure;
subplot(1, 2, 1);
histogram(y_test, 'Normalization', 'probability', 'BinWidth', 0.1);
title('Actual U values at t=40');
xlabel('U values');
ylabel('Probability');
subplot(1, 2, 2);
histogram(predictions, 'Normalization', 'probability', 'BinWidth', 0.1);
title('Predicted U values at t=40');
xlabel('U values');
ylabel('Probability');
% Save the model if desired
save_model(model, 'u_prediction_cnn_2d.mat'); % Define the save_model function
% Define the load_and_preprocess_data function
% function X_train = load_and_preprocess_data()
% % Load and preprocess your 'X_train' data
% % Replace this with your actual data loading and preprocessing
% end
%
% % Define the load_target_values function
% function y_train = load_target_values()
% % Load or generate your target values (y_train) for training
% % Replace this with your actual code to obtain training target data
% % For example:
% % y_train = load('target_values.mat'); % Load target values from a file
% end
% Define the create_cnn_model function
function model = create_cnn_model(~, ~, ~)
model = alexnet; % You can customize this architecture
% Modify the model architecture as needed
end
% Define the compile_cnn_model function
function model = compile_cnn_model(model, X_train, y_train)
options = trainingOptions('adam', 'MaxEpochs', 10, 'MiniBatchSize', 32, 'Plots', 'training-progress');
model = trainNetwork(X_train, y_train, model.Layers, options);
end
% Define the train_cnn_model function
function model = train_cnn_model(model, ~, ~)
% Training code, if any specific function is required
end
% Define the predict_cnn_model function
function predictions = predict_cnn_model(model, X_test)
predictions = predict(model, X_test);
end
% Define the evaluate_cnn_model function
function evaluation_result = evaluate_cnn_model(~, ~, ~)
% Evaluation code, if any specific function is required
end
% Define the save_model function
function save_model(model, filename)
save(filename, 'model');
end
% Define the load_and_preprocess_test_data function
% function X_test = load_and_preprocess_test_data()
% % Load and preprocess your 'X_test' data for testing
% % Replace this with your actual data loading and preprocessing for testing
% end
%
% % Define the load_test_target_values function
% function y_test = load_test_target_values()
% % Load or generate your target values (y_test) for testing
% % Replace this with your actual code to obtain testing target data
% % For example:
% % y_test = load('test_target_values.mat'); % Load test target values from a file
% end
4 comentarios
Respuesta aceptada
Neha
el 15 de Nov. de 2023
Hi Praveen,
I understand that you want to train a CNN model to predict the u component at t=25 based on u components at t=10, t=15, and t=20. I assume that your dataset looks like this:
Input Data:
- Sample 1:
- u component at t=10: 33x33 array
- u component at t=15: 33x33 array
- u component at t=20: 33x33 array
- Sample 2:
- u component at t=10: 33x33 array
- u component at t=15: 33x33 array
- u component at t=20: 33x33 array
...
- Sample N:
- u component at t=10: 33x33 array
- u component at t=15: 33x33 array
- u component at t=20: 33x33 array
Output Data:
- Sample 1:
- u component at t=25: 33x33 array
- Sample 2:
- u component at t=25: 33x33 array
...
- Sample N:
- u component at t=25: 33x33 array
Based on the above assumption, the input size is 33 x 33 x 3 x num_samples (3 channels for u at t=10, t=15, t=20) and the output size is 33 x 33 x 1 x num_samples (1 channel for predicting u at t=25).
After preparing the dataset, you can refer to the following documentation link for more information on training a CNN model for regression:
Since the response size is 33x33x1, you may need to define a custom layer in the end after the fully connected layer. Please refer to the following documentation link for more information on defining a custom layer:
Hope this helps!
1 comentario
Más respuestas (0)
Ver también
Categorías
Más información sobre Get Started with Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!