How to do a loop for different values?
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Omar B.
el 6 de Nov. de 2023
Comentada: Omar B.
el 6 de Nov. de 2023
I am trying to find basin of attraction of the roots, and I want to run the code for different values of q ( where q=0:0.2:,0.99) . How to get the results for all the values of q ?
f = @(z) z.^4 - 5*z.^2+4; % Function with real roots
% the roots
r1 =-2;
r2 =-1;
r3 =1;
r4=2;
%% range of basin
nx = 1000;
ny = 1000;
xmin = -4; xmax = 4;
ymin = -2; ymax = 2;
x = linspace(xmin,xmax,nx); % Real space
y = linspace(ymin,ymax,ny); % Imaginary space
[X, Y] = meshgrid(x,y);
Z = X + 1i*Y;
%% Perform our method
q=0.95;
nit = 100; % Maximum number of Newton iterations to be done
for i = 1:nit
Z = Z - (f(Z).*Z.*(1-q))./ (f(Z)-f(q.*Z));
end
%% plotting
eps = 1e-10; % Tolerance to determine closeness to 0.0
Z1 = abs(Z - r1) < eps; Z2 = abs(Z - r2) < eps;
Z3 = abs(Z - r3) < eps; Z4 = abs(Z - r4) < eps;
Z5 = ~(Z1 + Z2 + Z3+Z4);
figure;
map = [0.4660 0.6740 0.1880; 0.8500 0.3250 0.0980; 0 0.4470 0.7410; 0.9290 0.6940 0.1250; 0 0 0];
colormap(map);
Z = Z1 + 2*Z2 + 3*Z3 + 4*Z4 + 5*Z5;
image([xmin xmax],[ymin ymax], Z);
set(gca,'YDir','normal');
axis equal; axis tight;
xlabel('$x$','Interpreter','latex','FontSize',14)
ylabel('$y$','Interpreter','latex','FontSize',14)
title('Basins of attraction for the root of $f(x)=z^4 - 5z^2+4$.','Interpreter','latex','FontSize',14)
4 comentarios
Dyuman Joshi
el 6 de Nov. de 2023
Do you just want the plots as an output? or any other value/variable as well?
Respuesta aceptada
Dyuman Joshi
el 6 de Nov. de 2023
The output images are not big/clear enough with subplot/tiledlayout.
So, this code generates a new figure for each image -
q = 0:0.2:0.99;
%Call the function
arrayfun(@myFun, q)
function myFun(q)
f = @(z) z.^4 - 5*z.^2+4; % Function with real roots
% the roots
r1 =-2;
r2 =-1;
r3 =1;
r4=2;
% range of basin
nx = 1000;
ny = 1000;
xmin = -4; xmax = 4;
ymin = -2; ymax = 2;
x = linspace(xmin,xmax,nx); % Real space
y = linspace(ymin,ymax,ny); % Imaginary space
[X, Y] = meshgrid(x,y);
Z = X + 1i*Y;
%Perform our method
nit = 100; % Maximum number of Newton iterations to be done
for i = 1:nit
%% Function evaluations are costly, especially for an array with 1000x1000 elements
%% Calculate once and store the data in an array instead of calculating
%% twice separately
Z0 = f(Z);
Z = Z.*(1 - (Z0.*(1-q))./(Z0-f(q.*Z)));
end
%% eps is a built-in function, better to not use it as a variable name
Eps = 1e-10; % Tolerance to determine closeness to 0.0
Z1 = abs(Z - r1) < Eps; Z2 = abs(Z - r2) < Eps;
Z3 = abs(Z - r3) < Eps; Z4 = abs(Z - r4) < Eps;
Z5 = ~(Z1 + Z2 + Z3 + Z4);
map = [0.4660 0.6740 0.1880; 0.8500 0.3250 0.0980; 0 0.4470 0.7410; 0.9290 0.6940 0.1250; 0 0 0];
colormap(map);
%plotting
Z = Z1 + 2*Z2 + 3*Z3 + 4*Z4 + 5*Z5;
figure
image([xmin xmax],[ymin ymax], Z);
set(gca,'YDir','normal');
axis tight; axis equal;
xlabel('$x$','Interpreter','latex','FontSize',12)
ylabel('$y$','Interpreter','latex','FontSize',12)
title(sprintf('Basins of attraction for the root of $f(x)=z^4 - 5z^2+4$ for q = %g', q),'Interpreter','latex','FontSize',12)
end
Más respuestas (0)
Ver también
Categorías
Más información sobre Display Image en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!