Hanning Window Energy Density Value
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Selina
el 15 de Nov. de 2023
Comentada: William Rose
el 16 de Nov. de 2023
Good afternoon (code below figure),
I am processing some velocity data for a turbulent flow and want to determine the energy spectra to determine the shedding frequency (the picture below is from a test section that does not have a peak at 1.35Hz). I want to get rid off the noise. Format of the input data is:
time = 0, 0.05, 0.1, 0.15.
data = 1,1.2,1.04,0.95, ...
My colleague created a code that looks like this (fs = 200) and results in the "noisy" data plot at about 10^-2. Here data input has 4 coloms for 4 different velocity measurements.
len = length(data);
psd = (abs(fft(data(:,:),len)).^2)/(len*fs); % Fourier transform (2nd argument = vector length, such that the DFT returns n-points). Amplitude squared for PSD estimate, as this equals power
psd = 2.*psd(2:len/2+1,:); % single-sided spectrum. (1:N/2+1) takes only one half of the spectrum; the other half is its reflection
f = fs/2*linspace(0,1,len/2+1).'; % Nyquist frequency of the signal = fs/2
f = f(2:end); % remove zero Hz component
When I try and create the same with a hanning window; the magnitude is way off. Even multiplying it with 2 for amplitude correction does not help. Am I not seeing something?
Or how can I add the window to the code above? Is there a simple way?
Current code:
figure(1)
ylabel('Power Density Spectrum')
xlabel('Frequency (Hz)');
u_velocity=u_i(:,1); %Colum 1 is for u-velocity
mean_u = mean(u_velocity);
data = u_velocity-mean_u; %Velocity fluctuations around mean
chunk_size = 5000; % Size of each processing chunk
num_chunks = length(data) / chunk_size;
psd_combined = zeros(1, chunk_size / 2);
for i = 1:num_chunks
chunk_start = (i - 1) * chunk_size + 1;
chunk_end = i * chunk_size;
% Extract the current chunk of data
chunk = data(chunk_start:chunk_end);
% Apply the Hanning window
window = hanning(length(chunk));
windowed_data = chunk .* window';
% Perform FFT
fft_result = fft(windowed_data);
% Calculate Power Spectral Density (PSD) for this chunk
psd_chunk = abs(fft_result).^2;
% Combine the PSD results
psd_combined = psd_combined + psd_chunk(1:length(psd_chunk)/2);
end
psd_combined = psd_combined*10;%Correct Window
% Frequency axis
sample_rate = 200; % Adjust the sample rate accordingly
frequencies = linspace(0, sample_rate/2, length(psd_combined));
% Plot the PSD
semilogy(frequencies, psd_combined);
grid on;
0 comentarios
Respuesta aceptada
William Rose
el 15 de Nov. de 2023
The normalization of the power spectrum is tricky. For example,there is the power spectrum and the power spectral density. Applyng a window reduces power somewhat. When you divide the signal into chunks and verage the spectra from the different chunks, this can introduce other normalization issues. Therefore I would not worry too much about the normalization. JUst compute your spectra in a consistent way, and then compare spectra (computed the same way) under different experimental conditions, or at different places in your system, to learn whatever it is you are trying to learn.
Your approach of dividng the signal into chunks and averaging the spectra from the different chunks is definitely a good one. And so is applying a window to each chuunk. This will reduce the noisiness of your spectra (i.e. the variance of your spectral esitmates) considerably.
I recommend using
and I recommend using half-overlapped windows. This is because windowing tapers the signal to zero at the end of each chunk, so you are kind of throwing away data whn you do this. By using half-overlapped windows, you capture the parts that would otherwise be lost.
4 comentarios
William Rose
el 16 de Nov. de 2023
load('u_i.mat');
x=detrend(u_i(:,1)); % x=column 1, detrended
fs=200; % sampling freq (Hz)
Ns=length(x); % number of samples
Tchunk=10; % chunk duration (s)
Nchunk=Tchunk*fs; % samples per chunk
% compute PSD with pwelch, using Hann window
[pxx,f] = pwelch(x,hann(Nchunk),Nchunk/2,Nchunk,fs); % compute spectral estimate
% plot results
loglog(f,pxx,'-r'); title('Power Spectral Density'); grid on
xlabel('Frequency (Hz)'); ylabel('P.S.D. (power/Hz)');
I chose Tchunk=10 s, to obtain a good tradeoff between smoothing the spectrum while still retaining sufficient frequency resolution to resolve the peak at about 1.3 Hz. You can change Tchunk to see if you like the spectrum better with some other value, such as Tchunk=2.5, 5, 25, 50, etc.
I removed the linear trend from x(t) before computing the spectral estimate. This done to remove power at f=0, which is annoying on the plot, and which can leak into the nearby non-zero low frequencies, if it is not removed.
Yes, I chose noverlap=Nchunk/2 in order to obtain half-overlapped chunks.
Más respuestas (0)
Ver también
Categorías
Más información sobre Spectral Estimation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!