"Not enough input arguments" error
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Josie
el 20 de Nov. de 2023
Comentada: Josie
el 20 de Nov. de 2023
I keep getting the "Not enough input arguments" error in the following code and I was wondering if someone can help me fix?
function backward_heat(x,u0)
% Solves the heat equation by backward difference method and plots the
% result; x - (pre-calculated) array of grid points
% in x, u0 - (pre-calculated) initial condition at grid points
N=length(x)-1;
if (N+1)~=length(u0)
error('Dimensions of x and u0 must agree')
end
h=(x(N+1)-x(1))/N;
tau=T/M; gamma=tau/h^2
w=zeros(N+1,M+1);
% grid points
t=(0:M)*tau;
% initial condition
w(:,1)=u0;
% solving the tridiagonal system by the double-sweep method
alpha=zeros(1,N);
beta=zeros(1,N);
for m=2:(M+1)
for k=1:(N-1)
alpha(k+1)=gamma/(1+gamma*(2-alpha(k)));
beta(k+1)=(beta(k)*gamma+w(k+1,m-1))/(1+gamma*(2-alpha(k)));
end
for k=(N+1):(-1):3
w(k-1,m)=alpha(k-1)*w(k,m)+beta(k-1);
end
end
% surface plot of u(x,t)
w=w';
surf(x,t,w);
4 comentarios
Dyuman Joshi
el 20 de Nov. de 2023
Editada: Dyuman Joshi
el 20 de Nov. de 2023
What is the assignment?
"Would you be able to explain what I need to do to get rid of the error please."
I did - You need to provide the values when you call the function. For your case, those would be x and u0.
Example - Let's take the tan function. You want to find the tan of something, but if you do not specify the value of something, how will MATLAB calculate the output?
So, it will give an error as follows -
tan
Respuesta aceptada
Sulaymon Eshkabilov
el 20 de Nov. de 2023
Variables T and M are also not specified. See how it can be executed:
x = 0:13;
u0 = ones(size(x));
backward_heat(x,u0)
function backward_heat(x,u0)
% Solves the heat equation by backward difference method and plots the
% result; x - (pre-calculated) array of grid points
% in x, u0 - (pre-calculated) initial condition at grid points
N=length(x)-1;
if (N+1)~=length(u0)
error('Dimensions of x and u0 must agree')
end
h=(x(N+1)-x(1))/N;
T = 10; M = 2; % Some values are assigned for T and M
tau=T/M; gamma=tau/h^2
w=zeros(N+1,M+1);
% grid points
t=(0:M)*tau;
% initial condition
w(:,1)=u0;
% solving the tridiagonal system by the double-sweep method
alpha=zeros(1,N);
beta=zeros(1,N);
for m=2:(M+1)
for k=1:(N-1)
alpha(k+1)=gamma/(1+gamma*(2-alpha(k)));
beta(k+1)=(beta(k)*gamma+w(k+1,m-1))/(1+gamma*(2-alpha(k)));
end
for k=(N+1):(-1):3
w(k-1,m)=alpha(k-1)*w(k,m)+beta(k-1);
end
end
% surface plot of u(x,t)
w=w';
surf(x,t,w);
end
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!