Why is dlgradient giving different answers?

1 visualización (últimos 30 días)
Vellapandi M Research Scholar
Vellapandi M Research Scholar el 18 de Dic. de 2023
Respondida: Angelo Yeo el 18 de Dic. de 2023
When I use the dlgradient function to compute the gradient of the expression (Parameters.fc2.Weights * tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias) + Parameters.fc2.Bias) with respect to Parameters.fc2.Bias, it yields varying results instead of a consistent value of 1. According to theoretical calculations, it should be 1, but for different values of y(:,i), I observe discrepancies. What might be the issue?
Parameters = struct;
stateSize = 1;
hiddenSize = 20;
Parameters.fc1 = struct;
sz_fc1 = [hiddenSize stateSize];
Parameters.fc1.Weights = initializeGlorot(sz_fc1, hiddenSize, stateSize);
Parameters.fc1.Bias = initializeZeros([hiddenSize 1]);
Parameters.fc2 = struct;
sz_fc2 = [stateSize hiddenSize];
Parameters.fc2.Weights = initializeGlorot(sz_fc2, stateSize, hiddenSize);
Parameters.fc2.Bias = initializeZeros([stateSize 1]);
y(:,1) = 1;
y(:,2) = 0.976;
gradient1.fc2.Bias = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias)
gradient2.fc2.Bias = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,2) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias)
  1 comentario
Matt J
Matt J el 18 de Dic. de 2023
Attach Parameters and y in a .mat file so we can test your code.

Iniciar sesión para comentar.

Respuesta aceptada

Angelo Yeo
Angelo Yeo el 18 de Dic. de 2023
You can try to incorporate dlfeval when using dlgradient. You can get the results of 1's as expected.
Parameters = struct;
stateSize = 1;
hiddenSize = 20;
Parameters.fc1 = struct;
sz_fc1 = [hiddenSize stateSize];
Parameters.fc1.Weights = initializeGlorot(sz_fc1, hiddenSize, stateSize);
Parameters.fc1.Bias = initializeZeros([hiddenSize 1]);
Parameters.fc2 = struct;
sz_fc2 = [stateSize hiddenSize];
Parameters.fc2.Weights = initializeGlorot(sz_fc2, stateSize, hiddenSize);
Parameters.fc2.Bias = initializeZeros([stateSize 1]);
y(:,1) = 1;
y(:,2) = 0.976;
[res1, res2] = dlfeval(@gradFun, Parameters, y)
res1 =
1×1 single dlarray 1
res2 =
1×1 single dlarray 1
function [res1, res2] = gradFun(Parameters, y)
res1 = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias);
res2 = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,2) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias);
end
function weights = initializeGlorot(sz,numOut,numIn)
Z = 2*rand(sz,'single') - 1;
bound = sqrt(6 / (numIn + numOut));
weights = bound * Z;
weights = dlarray(weights);
end
function parameter = initializeZeros(sz)
parameter = zeros(sz,'single');
parameter = dlarray(parameter);
end

Más respuestas (0)

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by