Second order ordinary differential equation

9 visualizaciones (últimos 30 días)
Abdul
Abdul el 15 de En. de 2024
Comentada: Sam Chak el 16 de En. de 2024
I am trying to find the exact solution of this differential equation, but the error 'explicit solution not found' occur -y''(x) +2cos2x*y(x) -lambda*y(x) =0
  3 comentarios
Abdul
Abdul el 15 de En. de 2024
I am using the command dsolve for finding the exact solution of this problem. If you have a code that works, kindly share it thanks
Walter Roberson
Walter Roberson el 15 de En. de 2024
The notation is a bit ambiguous.
Note that it matters in the end.
syms y(x) lambda
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 2 * cos(2*x) * y - lambda*y == 0
eqn(x) = 
dsolve(eqn)
Warning: Unable to find symbolic solution.
ans = [ empty sym ]
eqn2 = d2y + 2 * cos(2*x * y) - lambda*y == 0
eqn2(x) = 
dsolve(eqn2)
Warning: Unable to find symbolic solution.
ans = [ empty sym ]

Iniciar sesión para comentar.

Respuestas (1)

Sam Chak
Sam Chak el 15 de En. de 2024
I believe that 'explicit solution not found' is more of a notification than an error message. Upon closer inspection, your second-order system appears to resemble the Mathieu Differential Equation. If that's the case, the solution is provided in the form of the Mathieu function. For additional information, please refer to the following file on File Exchange:
  1 comentario
Sam Chak
Sam Chak el 16 de En. de 2024
@Abdul, I don't know how to express the Mathieu functions in MATLAB, but I simulated the Mathieu differential equation for different values of lambda (λ) to observe the stability of the solutions.
lambda = 1:6;
t = 0:0.01:60;
y0 = [1; 0];
for j = 1:numel(lambda)
sol = ode45(@(t, y) MathieuDE(t, y, lambda(j)), t, y0);
y = deval(sol, t);
subplot(2, 3, j)
plot(y(1,:), y(2,:)), grid on
xlabel('y_{1}'), ylabel('y_{2}')
title("\lambda = "+string(lambda(j)))
axis equal
end
%% Mathieu Differential Equation
function dydt = MathieuDE(t, y, lambda)
dydt = zeros(2, 1);
dydt(1) = y(2);
dydt(2) = 2*cos(2*t)*y(1) - lambda*y(1);
end

Iniciar sesión para comentar.

Categorías

Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by