Solution of a second order differential equation

2 visualizaciones (últimos 30 días)
Swami
Swami el 31 de En. de 2024
Comentada: Sam Chak el 31 de En. de 2024
I am unable to solve a differential equation using dsove command in Matlab. I get the Warning: Unable to find symbolic solution. Can you please help me with it.
clc
clear
close
syms y(x)
L=1;
A=1;
p=x^2;
s=10*diff(y,x)+100000*(diff(y,x))^3;
DE = diff(s*A,x,1)+p;
cond = [y(0.0)==0.0, y(L)==1.0];
sol = dsolve(DE==0.0,cond)
Warning: Unable to find symbolic solution.
sol = [ empty sym ]
Also I tried using bvp4c to solve it but was still unsuccessful. I have enclosed the code below. Thanks a lot for your help
!
clc
clear
close
L=1;
A=1;
% Using bvp4c
x=linspace(0,L,12);
yi=bvpinit(x,[1,1])
yi = struct with fields:
solver: 'bvpinit' x: [0 0.0909 0.1818 0.2727 0.3636 0.4545 0.5455 0.6364 0.7273 0.8182 0.9091 1] y: [2×12 double] yinit: [1 1]
sol=bvp4c(@bvpfcn,@bcfcn,yi)
Not enough input arguments.

Error in solution>bvpfcn (line 26)
-x^2/(10*A+300000*(y(2))^2)];

Error in bvparguments (line 96)
testODE = ode(x1,y1,odeExtras{:});

Error in bvp4c (line 119)
bvparguments(solver_name,ode,bc,solinit,options,varargin);
function dydx = bvpfcn(x,y,A)
dydx = zeros(2,1);
dydx = [y(2)
-x^2/(10*A+300000*(y(2))^2)];
end
function res = bcfcn(ya,yb)
res = [ya(1)-0.0
yb(1)-1.0];
end

Respuestas (1)

Sam Chak
Sam Chak el 31 de En. de 2024
I've got a solution from the bvp4c() solver.
syms y(x)
L = 1;
A = 1;
p = x^2;
s = 10*diff(y,x) + 100000*(diff(y,x))^3
s(x) = 
DE = diff(s*A,x,1) + p == 0;
[V, S] = odeToVectorField(DE)
V = 
S = 
clear
L = 1;
%% Using bvp4c
x = linspace(0, L, 21);
yi = bvpinit(x, [1, 1]);
sol = bvp4c(@bvpfcn, @bcfcn, yi);
x = sol.x;
y = sol.y;
%% Plot results
plot(x, y, '-o', 'linewidth', 1), grid
xlabel('x', 'fontsize', 14)
ylabel('y', 'fontweight', 'bold', 'fontsize', 14)
legend('y_{1}', 'y_{2}', 'location', 'southeast')
%% Differential equations
function dydx = bvpfcn(x,y)
A = 1;
dydx = [y(2);
- (x^2)/(300000*y(2)^2 + 10*A)];
end
%% Boundary condition
function res = bcfcn(ya,yb)
res = [ya(1) - 0;
yb(1) - 1];
end
  2 comentarios
Swami
Swami el 31 de En. de 2024
Thank you very much for the solution. But what changes did you make here? The code looks the same as before.
Best,
Swami
Sam Chak
Sam Chak el 31 de En. de 2024
I'm glad it works. What I did, I moved 'A = 1' to the bvpfcn() function so that I don't need to call unnecessary extra parameters. I like to place constants inside the function unless I want to test out some parameters. Generally, your bvp4c code works if you make a change to this line using this syntax to call 'A'.
sol = bvp4c(@(x, y) bvpfcn(x, y, A), @bcfcn, yi)
If you find the solution helpful, please consider clicking 'Accept' ✔ on the answer and voting 👍 for it. Thanks a bunch!

Iniciar sesión para comentar.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by