Newmark-Beta in dynamic analysis for solving nonlinear stiffness matrix problem
22 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ram
el 5 de Feb. de 2024
Comentada: Parvesh Deepan
el 25 de Jun. de 2024
Hello everyone i am solving multi degree freedom of system by using Newmarks beta method in which stiffness coefficient are nonlineare . When i am ruing the code, the result is look like scary . geting displacement value in kilometerers.I am attaching code . Please help me out.
Thanks
__________________________________________________________________________________________________________________
clear all
clc
% Define parameters
n = 3; % Number of degrees of freedom
m = eye(n); % Mass matrix (identity matrix for simplicity)
c = 0.1 * eye(n); % Damping matrix (proportional damping)
k = diag([11, 8, 9]); % Nonlinear stiffness matrix
% Time parameters
dt = 0.01; % Time step
t_final = 10; % Final time
t = 0:dt:t_final;
% Sine loading parameters
omega = 2*pi*0.5; % Frequency of the sine loading
F_sine = @(t) 200*10^3*sin(omega*t); % Sine loading function
% Initial conditions
x0 = zeros(n, 1); % Initial displacement
v0 = zeros(n, 1); % Initial velocity
% Newmark-Beta parameters
beta = 0.25; % Newmark-Beta parameter
gamma = 0.5; % Newmark-Beta parameter
% Initialize arrays
x = zeros(n, length(t)); % Displacement array
v = zeros(n, length(t)); % Velocity array
a = zeros(n, length(t)); % Acceleration array
% Initial conditions
x(:,1) = x0;
v(:,1) = v0;
a(:,1) = m \ (-c*v(:,1) - NonlinearStiffness(x(:,1), k));
% Newmark-Beta iteration
for i = 2:length(t)
% Predictor step
x_pred = x(:,i-1) + dt*v(:,i-1) + (dt^2/2) * ((1-2*beta)*a(:,i-1));
v_pred = v(:,i-1) + dt*((1-gamma)*a(:,i-1));
% Corrector step
a_pred = m \ (-c*v_pred - NonlinearStiffness(x_pred, k) + F_sine(t(i)));
x(:,i) = x(:,i-1) + dt*v_pred + (dt^2/2) * (beta*a_pred + (1-beta)*a(:,i-1));
v(:,i) = v_pred + dt*((1-gamma)*a_pred + gamma*a(:,i-1));
% Update acceleration for next iteration
a(:,i) = a_pred;
end
% Plot results
plot(t, x(1,:));
xlabel('Time');
ylabel('Displacement DOF 1 ')
% Nonlinear stiffness function
function F = NonlinearStiffness(x, k)
F = k * x.^3; % Element-wise cubic nonlinear stiffness
end
________________________________________________________________________
First figure is the displcement time seris and ssecond is the obtain displcamenet.


0 comentarios
Respuesta aceptada
VBBV
el 5 de Feb. de 2024
Editada: VBBV
el 5 de Feb. de 2024
clear all
clc
% Define parameters
n = 3; % Number of degrees of freedom
m = eye(n); % Mass matrix (identity matrix for simplicity)
c = 0.1 * eye(n); % Damping matrix (proportional damping)
k = diag([11, 8, 9]); % Nonlinear stiffness matrix
% Time parameters
dt = 0.001; % Time step
t_final = 10; % Final time
t = 0:dt:t_final;
% Sine loading parameters
omega = 2*pi*0.5; % Frequency of the sine loading
F_sine = @(t) 200*10^3*sin(omega*t); % Sine loading function
% Initial conditions
x0 = zeros(n, 1); % Initial displacement
v0 = zeros(n, 1); % Initial velocity
% Newmark-Beta parameters
beta = 0.25; % Newmark-Beta parameter
gamma = 0.5; % Newmark-Beta parameter
% Initialize arrays
x = zeros(n, length(t)); % Displacement array
v = zeros(n, length(t)); % Velocity array
a = zeros(n, length(t)); % Acceleration array
% Initial conditions
x(:,1) = x0;
v(:,1) = v0;
a(:,1) = m \ (-c*v(:,1) - NonlinearStiffness(x(:,1), k));
% Newmark-Beta iteration
for i = 2:length(t)
% Predictor step
x_pred = x(:,i-1) + dt*v(:,i-1) + (dt^2/2) * ((1-2*beta)*a(:,i-1) + 2*beta*a(:,i-1));
v_pred = v(:,i-1) + dt*((1-gamma)*a(:,i-1));
% Corrector step
a_pred = m \ (-c*v_pred - NonlinearStiffness(x_pred, k) + F_sine(t(i)));
x(:,i) = x(:,i-1) + dt*v_pred + (dt^2/2) * (beta*a_pred + (1-beta)*a(:,i-1));
v(:,i) = v_pred + dt*((1-gamma)*a_pred + dt*gamma*a(:,i));
% Update acceleration for next iteration
a(:,i) = a_pred;
end
% Plot results
plot(t, x(1:3,:));
xlabel('Time');
ylabel('Displacement DOF 1 ')
xlim([0 5]); grid
% Nonlinear stiffness function
function F = NonlinearStiffness(x, k)
F = k * x.^3; % Element-wise cubic nonlinear stiffness
end
3 comentarios
Parvesh Deepan
el 25 de Jun. de 2024
Can you please solve this problem based on Newmark Beta method (problem is attached herewith).
Más respuestas (0)
Ver también
Categorías
Más información sobre Dynamic System Models en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
