Why do I get an error when I ran the integral?
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi everyone, I got an error when I run following the code, I think because of the symbolic piecewise functions or the nested integrals, or maybe something else. Could anyone help here, please?
clear all; clear; clc;
hU = 100;
NU = 10;
x0 = 150;
a1 = 11.95;
b1 = 0.135;
drm = sqrt(hU^2 + x0^2);
DML = 0.57 * drm^1.6;
% AL = zeros(size(50:10:300));
j = 1;
Rs = 50:10:300;
for i = 50:10:300
xl = sqrt(i^2 - x0^2 + hU^2);
xh = sqrt(i^2 + x0^2 + hU^2);
syms x r
f(x) = piecewise(x >= hU & x <= xl, (2 * x) / i^2, x > xl & x <= xh, (2 * x) / (pi * i^2) * acos(((x^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(x^2 - hU^2))));
f(r) = piecewise(r >= hU & r <= xl, (2 * r) / i^2, r > xl & r <= xh, (2 * r) / (pi * i^2) * acos(((r^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(r^2 - hU^2))));
DLM(r) = r^1.6;
PL(r) = 1 / (1 + a1 * exp(-b1 * ((180/pi)*asin(hU / r) - a1)));
PN(r) = 1 - PL(r);
PL(x) = 1 / (1 + a1 * exp(-b1 * ((180/pi)*asin(hU / x) - a1)));
PN(x) = 1 - PL(x);
AL(j) = NU * vpa(int(PL(r) * f(r) * (int(PL(x) * f(x), r, xh) + int(PN(x) * f(x), DLM(r), xh))^((NU)-1), hU, DML), 6);
j = j + 1;
end
plot(Rs, AL, 'b--o')
grid on
xlabel('Avg. Cell radius in meters')
ylabel('Association Probability')
legend('LOS Association Prob.')
5 comentarios
Walter Roberson
el 8 de Feb. de 2024
Several of your int() do not indicate which variable to integrate over, and are guessing incorrectly.
Respuestas (1)
Walter Roberson
el 7 de Feb. de 2024
f(x) = piecewise(x >= hU & x <= xl, (2 * x) / i^2, x > xl & x <= xh, (2 * x) / (pi * i^2) * acos(((x^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(x^2 - hU^2))));
There is no clause for x > xh or x < hU
5 comentarios
Wafaa
el 23 de Mzo. de 2024
Editada: Walter Roberson
el 23 de Mzo. de 2024
Warning: Unable to check whether the integrand
exists everywhere on the integration interval.
> In symengine
In sym/int (line 162)
In pp (line 31)
Warning: Unable to check whether the integrand
exists everywhere on the integration interval.
R(x,y)=piecewise(y <= x & x <= 1 & 0 <= y, y + 1, x < y & 0 <= x & y <= 1, x + 1);
%define xi
xi=zeros(1,m);
for i=1:m
xi(i)=(i-1)/(m-1);
end
%define psi(i)=L(R(x,y)) where y=xi
Lpsi=sym(zeros(1,m));
psi=sym(zeros(1,m));
for i=1:m
% psi(i)=ff(xi(i))-(R(x,xi(i))^3)*(x/2)+diff(R(x,xi(i))^3)*((x/3)-(x^2/2))+diff(R(x,xi(i))^3,2)*((x/4)-(2*x^2/4)+(x^3/3));%int(K(x,y)*(R(x,y))^3,y,0,xi(i))+int(K(x,y)*(R(x,y))^3,y,xi(i),1);
psi(i)=ff(xi(i))-int(K(x,y)*(R(x,y))^3,y,0,1);
Lpsi(i)=ff(x)-int(K(x,y)*subs(psi(i),x,y)^3,y,0,1);
% Lpsi(i)=psi(i)^3*(x/2)+diff(psi(i)^3)*((x/3)-(x^2/2))+diff(psi(i)^3,2)*((x/4)-(2*x^2/4)+(x^3/3));
end
please help me
Walter Roberson
el 23 de Mzo. de 2024
your xl is mostly complex-valued, which is outside the valid piecewise() range, so you mostly get NaN
hU = 100;
NU = 10;
x0 = 150;
a1 = 11.95;
b1 = 0.135;
drm = sqrt(hU^2 + x0^2);
DML = 0.57 * drm^1.6;
% AL = zeros(size(50:10:300));
j = 1;
%Rs = 50:10:300;
Rs = 50:10:100;
for i = Rs
xl = sqrt(i^2 - x0^2 + hU^2)
xh = sqrt(i^2 + x0^2 + hU^2)
syms x r
f(x) = piecewise(x >= hU & x <= xl, (2 * x) / i^2, x > xl & x <= xh, (2 * x) / (pi * i^2) * acos(((x^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(x^2 - hU^2))))
%f(r) = piecewise(r >= hU & r <= xl, (2 * r) / i^2, r > xl & r <= xh, (2 * r) / (pi * i^2) * acos(((r^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(r^2 - hU^2))));
DLM(r) = r^1.6;
%PL(r) = 1 / (1 + a1 * exp(-b1 * ((180/pi)*asin(hU / r) - a1)));
%PN(r) = 1 - PL(r);
PL(x) = 1 / (1 + a1 * exp(-b1 * ((180/pi)*asin(hU / x) - a1)));
PN(x) = 1 - PL(x);
inner3 = PL(x) * f(x)
inner1 = int(inner3, x, xl, xh)
inner4 = PN(x) * f(x)
inner2 = int(inner4, x, DLM(r), xh)
outer = int(PL(r) * f(r) * (inner1 + inner2)^((NU)-1), r, hU, DML)
AL(j) = NU * vpa(outer, 6);
AL(j)
j = j + 1;
end
dAL = double(AL);
plot(Rs, dAL, 'b--o')
grid on
xlabel('Avg. Cell radius in meters')
ylabel('Association Probability')
legend('LOS Association Prob.')
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!