Unable to perform assignment because the left and right sides have a different number of elements.

1 visualización (últimos 30 días)
I am trying to run this code but always get this error
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b Msol positive
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
b_num = linspace(0.001,8,NN2);
for u = 1:numel(b_num)
Msol(u) = vpa(solve(subs(num,b,b_num(u))));
end
Unable to perform assignment because the left and right sides have a different number of elements.

Error in sym/privsubsasgn (line 1200)
L_tilde2 = builtin('subsasgn',L_tilde,struct('type','()','subs',{varargin}),R_tilde);

Error in indexing (line 1031)
C = privsubsasgn(L,R,inds{:});
However when the vector b_num starts from 0.008, the code works. Is there a way I can include the values of b_num less than 0.008? Many thanks!

Respuesta aceptada

Torsten
Torsten el 9 de Feb. de 2024
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b Msol positive
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
b_num = linspace(0.001,8,NN2);
Msol = nan(size(b_num));
for u = 1:numel(b_num)
sol = vpa(solve(subs(num,b,b_num(u))));
if ~isempty(sol)
Msol(u) = sol;
end
end
  3 comentarios
Torsten
Torsten el 9 de Feb. de 2024
Editada: Torsten el 9 de Feb. de 2024
What is the old one ? I thought it did not work.
If you want a fast solution, you must use the numerical function "roots" to solve for the roots of your polynomial in M of degree 7 instead of the symbolic "solve".
If your equation has more than one positive solution for M given b, I took the first one.
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
p = fliplr(coeffs(num,M));
p = matlabFunction(p);
b_num = linspace(0.001,8,NN2);
Msol = nan(size(b_num));
for u = 1:numel(b_num)
sol = roots(p(b_num(u)));
sol = sol(real(sol)>0 & abs(imag(sol)) < 1e-8);
if ~isempty(sol)
Msol(u) = sol(1);
end
end
plot(b_num,Msol)
grid on

Iniciar sesión para comentar.

Más respuestas (1)

Matt J
Matt J el 9 de Feb. de 2024
Editada: Matt J el 9 de Feb. de 2024
Your code assumes that solve() will always return one and only one solution. There is no reason to think that will always be the case (see below). So, the question becomes, what do you want to do when situations like in the examples below arise?
syms x real
vpa(solve(x^2==1))
ans = 
vpa(solve(x^2==-1))
ans = Empty sym: 0-by-1
  5 comentarios
Torsten
Torsten el 9 de Feb. de 2024
Editada: Torsten el 9 de Feb. de 2024
By removing the semicolon behind the line
sol = roots(p(b_num(u)));
you can see the numerical values of the 7 computed roots before the negative and complex ones are rejected by the line
sol = sol(real(sol)>0 & abs(imag(sol)) < 1e-8);
Fares
Fares el 9 de Feb. de 2024
Editada: Fares el 9 de Feb. de 2024
That is a good idea to keep in mind. Thanks Torsten for your continuous support!

Iniciar sesión para comentar.

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by