Unable to perform assignment because the left and right sides have a different number of elements.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I am trying to run this code but always get this error
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b Msol positive
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
b_num = linspace(0.001,8,NN2);
for u = 1:numel(b_num)
Msol(u) = vpa(solve(subs(num,b,b_num(u))));
end
However when the vector b_num starts from 0.008, the code works. Is there a way I can include the values of b_num less than 0.008? Many thanks!
0 comentarios
Respuesta aceptada
Torsten
el 9 de Feb. de 2024
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b Msol positive
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
b_num = linspace(0.001,8,NN2);
Msol = nan(size(b_num));
for u = 1:numel(b_num)
sol = vpa(solve(subs(num,b,b_num(u))));
if ~isempty(sol)
Msol(u) = sol;
end
end
3 comentarios
Torsten
el 9 de Feb. de 2024
Editada: Torsten
el 9 de Feb. de 2024
What is the old one ? I thought it did not work.
If you want a fast solution, you must use the numerical function "roots" to solve for the roots of your polynomial in M of degree 7 instead of the symbolic "solve".
If your equation has more than one positive solution for M given b, I took the first one.
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
p = fliplr(coeffs(num,M));
p = matlabFunction(p);
b_num = linspace(0.001,8,NN2);
Msol = nan(size(b_num));
for u = 1:numel(b_num)
sol = roots(p(b_num(u)));
sol = sol(real(sol)>0 & abs(imag(sol)) < 1e-8);
if ~isempty(sol)
Msol(u) = sol(1);
end
end
plot(b_num,Msol)
grid on
Más respuestas (1)
Matt J
el 9 de Feb. de 2024
Editada: Matt J
el 9 de Feb. de 2024
Your code assumes that solve() will always return one and only one solution. There is no reason to think that will always be the case (see below). So, the question becomes, what do you want to do when situations like in the examples below arise?
syms x real
vpa(solve(x^2==1))
vpa(solve(x^2==-1))
5 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

