Creating and using Datastore for LSTM time sequence data
    6 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Narayan
 el 11 de Feb. de 2024
  
    
    
    
    
    Comentada: Narayan
 el 12 de Feb. de 2024
            I have time sequence data files more than 10000 numbers stored individually at csv files. Each sequence data file consists of a sample of data from 6300 features taken at 5 time sequences. Each column is a measurement data from a feature. The labels are stored in separate file sequencially.
  -0.7  -1.7  -5.09  -4.79   ....
  -0.7  -1.7  -5.09  -4.79    ....
-1.06  -1.59  -5.08  -4.76 .....   
-1.42  -1.86  -5.61  -4.86    ....
 -1.34  -2.01  -5.1  -4.62 .....
numFeatures= 6300;
numHiddenUnits = 100;
numClasses = 3;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];
options = trainingOptions('adam', ...
    'MiniBatchSize',20,...
    'MaxEpochs',10, ...
    'Shuffle','once',...
    'GradientThreshold',0.001, ...
    'Verbose',1, ...
    'Plots','training-progress');
I want to use the data for LSTM classification. I could not load all the data for training purpose.
Matlab asks for cell data for each time sequence sample data for training.
So, How can I load the files and train the network using the datastore for such large data?
0 comentarios
Respuesta aceptada
  Angelo Yeo
    
 el 11 de Feb. de 2024
        tabularTextDatastore supports to manage a large set of "csv" files. To quote from the doc:
Use a TabularTextDatastore object to manage large collections of text files containing column-oriented or tabular data where the collection does not necessarily fit in memory.
Más respuestas (0)
Ver también
Categorías
				Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

