Creating and using Datastore for LSTM time sequence data
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Narayan
el 11 de Feb. de 2024
Comentada: Narayan
el 12 de Feb. de 2024
I have time sequence data files more than 10000 numbers stored individually at csv files. Each sequence data file consists of a sample of data from 6300 features taken at 5 time sequences. Each column is a measurement data from a feature. The labels are stored in separate file sequencially.
-0.7 -1.7 -5.09 -4.79 ....
-0.7 -1.7 -5.09 -4.79 ....
-1.06 -1.59 -5.08 -4.76 .....
-1.42 -1.86 -5.61 -4.86 ....
-1.34 -2.01 -5.1 -4.62 .....
numFeatures= 6300;
numHiddenUnits = 100;
numClasses = 3;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MiniBatchSize',20,...
'MaxEpochs',10, ...
'Shuffle','once',...
'GradientThreshold',0.001, ...
'Verbose',1, ...
'Plots','training-progress');
I want to use the data for LSTM classification. I could not load all the data for training purpose.
Matlab asks for cell data for each time sequence sample data for training.
So, How can I load the files and train the network using the datastore for such large data?
0 comentarios
Respuesta aceptada
Angelo Yeo
el 11 de Feb. de 2024
tabularTextDatastore supports to manage a large set of "csv" files. To quote from the doc:
Use a TabularTextDatastore object to manage large collections of text files containing column-oriented or tabular data where the collection does not necessarily fit in memory.
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!