Unable to find explicit solution in Lagrangian optimization
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Fabian
el 11 de Feb. de 2024
Comentada: Matt J
el 11 de Feb. de 2024
I am trying to find the analytical solution to the following problem:
I tried solving it by coding the Lagrangian by hand and use solve, but Matlab prints the warning: "Unable to find explicit solution".
I used the following code:
syms e1 e2 p1 p2 rho gamma lambda
syms E H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho)^(1/rho)
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-E)
L_e1 = diff(L,e1) == 0
L_e2 = diff(L,e2) == 0
L_lambda = diff(L,lambda) == 0
system = [L_e1,L_e2,L_lambda]
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
Do you know what I could do to solve this? Or is there a different and better way to find an analytical solution?
1 comentario
Respuesta aceptada
Catalytic
el 11 de Feb. de 2024
Editada: Catalytic
el 11 de Feb. de 2024
An analytical solution for 0<rho<1 is -
A=[1 0;
0 1;
-1 0;
0 -1]*E;
[fval,i]=min(A*[p1;p2]);
e1=A(i,1);
e2=A(i,2);
2 comentarios
Catalytic
el 11 de Feb. de 2024
Editada: Catalytic
el 11 de Feb. de 2024
You can see this graphically by plotting the constrained region. The region always has extreme points at (), so that's where the optimum must lie.
E=1;
for rho=[0.1:0.2:0.9]
fimplicit(@(e1,e2) abs(e1).^rho + abs(e2).^rho - E.^rho, [-1.5,1.5]); hold on
end
Matt J
el 11 de Feb. de 2024
I like it. And, in fact, because the extreme points lie at points where H(e1,e2) is not differentiable, it shows that you will never find the true solution with Lagrange multiplier analysis.
Más respuestas (1)
Matt J
el 11 de Feb. de 2024
If you make rho explicit, it seems to be able to find solutions. I doubt there would be a closed-form solution for general rho.
rho=2;
syms e1 e2 p1 p2 gamma lambda
syms E H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho)
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-E^rho)
L_e1 = diff(L,e1) == 0
L_e2 = diff(L,e2) == 0
L_lambda = diff(L,lambda) == 0
system = [L_e1,L_e2,L_lambda]
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
4 comentarios
Matt J
el 11 de Feb. de 2024
Even when it can be explicitly solved, the result isn't nice:
rho=sym(1/4);
syms e1 e2 p1 p2 gamma lambda
syms H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho);
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-1);
L_e1 = diff(L,e1) == 0;
L_e2 = diff(L,e2) == 0;
L_lambda = diff(L,lambda) == 0;
system = [L_e1,L_e2,L_lambda];
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
Walter Roberson
el 11 de Feb. de 2024
You can eliminate the root() constructs, but the result is confusing.
rho=sym(1/4);
syms e1 e2 p1 p2 gamma lambda
syms H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho);
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-1);
L_e1 = diff(L,e1) == 0;
L_e2 = diff(L,e2) == 0;
L_lambda = diff(L,lambda) == 0;
system = [L_e1,L_e2,L_lambda];
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda], 'maxdegree', 3)
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!