- Why did you discretize the output, "FM", and use softmaxLayer and regressionLayer at the same time? There is no point to discretize "FM" but to use "regressionLayer".
- The number of samples is too small. The total number of data is 152. Which is too small to train a neural network.
- Also, it is hard to distinguish between the samples. Most of features are identical or correlated.
Why RMSE doens't decrease in deeplearning toolbox?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi, I'm stduying Matlab deep learning toolbox, and confused about using regression layer.
I want to make regression model for 8 input and 1 output. Input and output are all feature.
How can I make model which RMSE goes dereasing?
Should I control hyperparameter to fix this situation?
Plz help my project. Thanks.
(data file is uploaded)
clc;clear;
filename = "training_set2.csv";
tbl = readtable(filename,'TextType','string');
head(tbl)
edges = 0.41:0.01:0.54; %discretize data
responses=cell2mat(table2cell(tbl(:,"FM")));
tbl(:,"FM") = cell2table(num2cell(discretize(responses,edges)));
labelName = "FM";
numObservations = size(tbl,1);
numObservationsTrain = floor(0.8*numObservations);
numObservationsValidation = floor(0.15*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation;
idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxValidation = idx(numObservationsTrain+1:numObservationsTrain+numObservationsValidation);
idxTest = idx(numObservationsTrain+numObservationsValidation+1:end);
tblTrain = cell2mat(table2cell(tbl(idxTrain,1:9)));
responseTrain = cell2mat(table2cell(tbl(idxTrain,10)));
tblValidation = cell2mat(table2cell(tbl(idxValidation,1:9)));
responseValidation = cell2mat(table2cell(tbl(idxValidation,10)));
tblTest = cell2mat(table2cell(tbl(idxTest,1:9)));
responseTest = cell2mat(table2cell(tbl(idxTest,10)));
numFeatures = size(tbl,2) - 1;
numClasses = 1;
layers = [
featureInputLayer(numFeatures)
fullyConnectedLayer(50)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
regressionLayer];
miniBatchSize = 1;
options = trainingOptions('adam', ...
'InitialLearnRate',0.0001, ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',50,...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'ValidationData',{tblValidation,responseValidation}, ...
'Verbose',false);
net = trainNetwork(tblTrain,responseTrain,layers,options);
0 comentarios
Respuestas (1)
Angelo Yeo
el 19 de Feb. de 2024
The training environment is not ideal to use deep neural networks. A few comments:
I want to recommend you take the following courses for a better understanding for theories behind Deep Learning.
0 comentarios
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!