Borrar filtros
Borrar filtros

EVM calculation in communication toolbox

25 visualizaciones (últimos 30 días)
Anu el 26 de Mzo. de 2024
Comentada: Anu el 2 de Abr. de 2024
I need a clarification in EVM calculation using comm.EVM system object.
my code for your reference:
% Define reference (ideal) signal vector
r = [0.707+0.707i, -0.707+0.707i, -0.707-0.707i, 0.707-0.707i];
% Define received signal vector
s = [1+2i, -2+3i, -3-4i, 5-6i];
% Calculate EVM using comm.EVM
evm_metric = comm.EVM;
evm_result = evm_metric(r', s');
evm_result_1 = evm_metric(s', r');
obtained result:
output of evm_result = 422.0673 %
output of evm_result_1 = 82.7617%
my doubts are:
  1. What is the % range of the EVM value?
  2. Can you please clarify the argument order - (reference signal,received signal) or (received signal,reference signal).

Respuesta aceptada

Sudarsanan A K
Sudarsanan A K el 26 de Mzo. de 2024
Hello Anu,
The "comm.EVM" system object is used to calculate the EVM (Error Vector Magnitude) between the reference signal and the received signal.
  1. The minimum EVM value is , representing an ideal match between transmitted and received signals, with no errors. There's no fixed maximum limit for EVM; values can exceed if the magnitude of the error vector is much greater than the magnitude of the reference signal. This indicates poor signal quality or significant distortion in the received signal.
  2. The correct argument order for the "comm.EVM" object is (reference signal, received signal), as evident from the documentation:
I hope this helps!
  5 comentarios
Sudarsanan A K
Sudarsanan A K el 27 de Mzo. de 2024
Editada: Sudarsanan A K el 27 de Mzo. de 2024
The results from both the comm.EVM system object and the "lteEVM" function are actually consistent. It's crucial to recognize that these functions require the input arguments in different orders. Unlike the "comm.EVM" system object, the "lteEVM" function expects the input array first, followed by the reference signal vector. (
Here is a demonstration:
% Define reference (ideal) signal vector
r = [0.707+0.707i, -0.707+0.707i, -0.707-0.707i, 0.707-0.707i];
% Add AWGN to the reference signal to simulate the received signal
% The second argument specifies the SNR (Signal-to-Noise Ratio) in dB
snr = 3; % Example SNR value, adjust this to simulate different noise levels
s = awgn(r, snr, 'measured');
% Calculate EVM using comm.EVM
evm_metric = comm.EVM;
% Correct argument order for comm.EVM: (reference signal, received signal)
comEVMRMS_result = evm_metric(r', s')
comEVMRMS_result = 85.3031
% Correct argument order for lteEVM: (input array, reference signal)
lteEVM_result = lteEVM(s', r');
lteEVMRMS_result = lteEVM_result.RMS*100 % in '%'
lteEVMRMS_result = 85.3031
% Check if both EVM results are the same (within a small tolerance to account for numerical precision)
tolerance = 1e-4; % Define a small tolerance
if abs(comEVMRMS_result - lteEVMRMS_result) < tolerance
disp('Both EVM results are the same.');
disp('EVM results differ.');
Both EVM results are the same.
I hope this helps!
Anu el 2 de Abr. de 2024
Thank you for your support

Iniciar sesión para comentar.

Más respuestas (0)


Más información sobre Spectral Measurements en Help Center y File Exchange.





Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by