Efficient Vectorization of For Loop

2 visualizaciones (últimos 30 días)
Shreyas Bharadwaj
Shreyas Bharadwaj el 15 de Abr. de 2024
Comentada: Shreyas Bharadwaj el 16 de Abr. de 2024
Hi,
I have three matrices and C and am trying to compute a fourth matrix Min the following way:
for p = 1:N
for q = 1:N
M(p,q) = 2 * sum(A(:,q) .* conj(B(:,p)) .* C(:,q));
end
end
All matrices are . I am trying to compute this for N = 750 or so and the computation is extremely slow. I cannot find any obvious way to vectorize the code. Any help would be very much appreciated.
Thanks.

Respuesta aceptada

Bruno Luong
Bruno Luong el 15 de Abr. de 2024
Editada: Bruno Luong el 15 de Abr. de 2024
Not tested but the sign reading tell me
M = 2*B' * (A.*C);
  4 comentarios
James Tursa
James Tursa el 15 de Abr. de 2024
Editada: James Tursa el 15 de Abr. de 2024
I would guess that having 2*B' at the front will force MATLAB to physically compute the conjugate transpose of B first. However, if you segregate the 2* operation as 2 * (B' * (A.*C)), the B' would not need to be physically formed to do the conjugate transpose matrix multiply since this will be handled by flags passed into the BLAS routine. Maybe a bit faster? E.g.,
A = rand(5000); B = rand(5000); C = rand(5000);
timeit(@()2*B' * (A.*C))
ans = 0.5515
timeit(@()2*(B' * (A.*C)))
ans = 0.4901
Shreyas Bharadwaj
Shreyas Bharadwaj el 16 de Abr. de 2024
Thank you!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Solver Outputs and Iterative Display en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by