Efficient Vectorization of For Loop
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Shreyas Bharadwaj
el 15 de Abr. de 2024
Comentada: Shreyas Bharadwaj
el 16 de Abr. de 2024
Hi,
I have three matrices and C and am trying to compute a fourth matrix Min the following way:
for p = 1:N
for q = 1:N
M(p,q) = 2 * sum(A(:,q) .* conj(B(:,p)) .* C(:,q));
end
end
All matrices are . I am trying to compute this for N = 750 or so and the computation is extremely slow. I cannot find any obvious way to vectorize the code. Any help would be very much appreciated.
Thanks.
0 comentarios
Respuesta aceptada
Bruno Luong
el 15 de Abr. de 2024
Editada: Bruno Luong
el 15 de Abr. de 2024
Not tested but the sign reading tell me
M = 2*B' * (A.*C);
4 comentarios
James Tursa
el 15 de Abr. de 2024
Editada: James Tursa
el 15 de Abr. de 2024
I would guess that having 2*B' at the front will force MATLAB to physically compute the conjugate transpose of B first. However, if you segregate the 2* operation as 2 * (B' * (A.*C)), the B' would not need to be physically formed to do the conjugate transpose matrix multiply since this will be handled by flags passed into the BLAS routine. Maybe a bit faster? E.g.,
A = rand(5000); B = rand(5000); C = rand(5000);
timeit(@()2*B' * (A.*C))
timeit(@()2*(B' * (A.*C)))
Más respuestas (0)
Ver también
Categorías
Más información sobre Solver Outputs and Iterative Display en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!