How to find the distance between two points along a curve?

19 visualizaciones (últimos 30 días)
Sathiya
Sathiya el 26 de Abr. de 2024
Comentada: Mathieu NOE el 29 de Abr. de 2024
I have a set of generated X and Y axis data, which have given a curved line. Now, I need to find the distance between two specified points along the curve, not the straight shortest distance between two points but along the curve path. Can someone help me finding this numerically?
  7 comentarios
Mathieu NOE
Mathieu NOE el 26 de Abr. de 2024
dr represents only the increment of arc length (quite constant in this example)
now you need to do a sum of them - see my answer
Sathiya
Sathiya el 29 de Abr. de 2024
@Sam Chak, dr here gives the shortest distance (displacement) between two points. For eg. lets say, I need the distance along the curve from 1st point and 50th point, this formula finds the straight distance between data points, not along the curve.

Iniciar sesión para comentar.

Respuestas (2)

Mathieu NOE
Mathieu NOE el 26 de Abr. de 2024
Editada: Mathieu NOE el 26 de Abr. de 2024
hello
try this
th = linspace(-pi/2, pi/2, 100);
R = 200;
X = R * sin(th) ; % X-coordinates
Y = R * cos(th) ; % Y-coordinates
dx = diff(X);
dy = diff(Y);
ds = sqrt(dx.^2+dy.^2); % increment of arc length
s = cumsum(ds); % integration => total arc length
s = [0 s]; % add first point : arc length = 0
% compute arc length between two points (defined by index position)
k1 = 25;
k2 = 59;
d = s(k2) - s(k1)
d = 215.7771
plot(X, Y, 'r.-',X(k1:k2), Y(k1:k2), 'db');
axis square
  4 comentarios
Torsten
Torsten el 27 de Abr. de 2024
If you have an explicit equation of your curve, you can use the usual formula for arclength:
R = 200;
fun = @(t)sqrt((R*cos(t)).^2+(R*(-sin(t))).^2)
fun = function_handle with value:
@(t)sqrt((R*cos(t)).^2+(R*(-sin(t))).^2)
length_of_curve = integral(fun,-pi/2,pi/2)
length_of_curve = 628.3185
2*pi*R/2
ans = 628.3185
Sathiya
Sathiya el 29 de Abr. de 2024
Yes, but I donot have a curve fitted equation for my curve.

Iniciar sesión para comentar.


Walter Roberson
Walter Roberson el 27 de Abr. de 2024
  2 comentarios
Sathiya
Sathiya el 29 de Abr. de 2024
@Mathieu NOE, understood. Now it is perfect to use then. Thanks Mathieu and all others who spent their time for my problem.

Iniciar sesión para comentar.

Categorías

Más información sobre Interpolation en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by