Error Using Optimization with Integer Variables and Non-linear Constraints
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi guys! I would be very grateful if you could help me!
I'm trying to minimize the norm of a vector using optimization algorithms in MATLAB, but I'm getting an error that says "Problems with integer variables and nonlinear equality constraints are not supported."
Could someone help me understand how I can solve this and minimize the norm of the vector?
Here's the implemented code:
wpass = 0.0318*pi;
wstop = 0.15*pi;
pb_ripple = 0.03;
sb_ripple = 0.03;
n = 25;
l = 7;
k = 2^l;
N = 15*n;
w = linspace(0,pi,N);
A = [ones(N,1) 2*cos(kron(w',1:n))];
Ap = A((0 <= w) & (w <= wpass),:);
As = A((wstop <= w) & (w <= pi),:);
H_dac=sinc(w);
H_dac_p=H_dac(1,(0 <= w) & (w <= wpass));
H_dac_s=H_dac(1,(wstop <= w) & (w <= pi));
h = optimvar('h',(n+1), 'Type','integer','LowerBound',-inf,'UpperBound',inf);
norm_h=optimvar('norm_h','Type','integer');
prob = optimproblem('ObjectiveSense','minimize');
prob.Constraints.cons1 = norm_h==norm(cat(1,h(end:-1:2),h),1);
prob.Objective = norm_h;
prob.Constraints.cons2 = Ap*h <= k*(1 + pb_ripple);
prob.Constraints.cons3 = Ap*h >= k*(1 - pb_ripple);
prob.Constraints.cons4 = As*h <= k*(sb_ripple);
prob.Constraints.cons5 = As*h >= -k*(sb_ripple);
sol = solve(prob);
0 comentarios
Respuestas (1)
Torsten
el 28 de Abr. de 2024
Editada: Torsten
el 28 de Abr. de 2024
Replace
norm_h=optimvar('norm_h','Type','integer');
prob = optimproblem('ObjectiveSense','minimize');
prob.Constraints.cons1 = norm_h==norm(cat(1,h(end:-1:2),h),1);
prob.Objective = norm_h;
by
%norm_h=optimvar('norm_h','Type','integer');
prob = optimproblem('ObjectiveSense','minimize');
%prob.Constraints.cons1 = norm_h==norm(cat(1,h(end:-1:2),h),1);
prob.Objective = norm(cat(1,h(end:-1:2),h),1);
Since h is integer valued, its 1-norm will also be integer-valued automatically.
The ga solver does not accept integer variables together with nonlinear equality constraints.
I think you can formulate the problem such that "intlinprog" can be used to solve it. This has several advantages over "ga" (which will most probably be chosen by MATLAB as solver for your problem).
2 comentarios
Torsten
el 29 de Abr. de 2024
Editada: Torsten
el 29 de Abr. de 2024
Which MATLAB version do you use ?
pb_ripple = sb_ripple = 0.03 gives the message that the linear bounds are infeasible.
For pb_ripple = sb_ripple = 0.3, your problem is solved by "ga".
If you use the 1-norm or infinity-norm instead of the 2-norm in your objective function, you can formulate the problem such that MATLAB is able to use "intinprog" instead of "ga" for its solution. This would be much faster and more reliable.
wpass = 0.0318*pi;
wstop = 0.15*pi;
pb_ripple = 0.3;
sb_ripple = 0.3;
n = 5;
l = 7;
k = 2^l;
N = 15*n;
w = linspace(0,pi,N);
A = [ones(N,1) 2*cos(kron(w',1:n))];
Ap = A((0 <= w) & (w <= wpass),:);
As = A((wstop <= w) & (w <= pi),:);
H_dac=sinc(w);
H_dac_p=H_dac(1,(0 <= w) & (w <= wpass));
H_dac_s=H_dac(1,(wstop <= w) & (w <= pi));
h = optimvar('h',n+1,'Type','integer');
Obj = sqrt(sum(cat(1,h(end:-1:1),h).^2));
prob = optimproblem("Objective",Obj);
prob.Constraints.cons2 = Ap*h <= k*(1 + pb_ripple);
prob.Constraints.cons3 = Ap*h >= k*(1 - pb_ripple);
prob.Constraints.cons4 = As*h <= k*(sb_ripple);
prob.Constraints.cons5 = As*h >= -k*(sb_ripple);
x0.h = randi([0 0],n+1,1);
[sol,fval] = solve(prob,x0)
sol.h
Ver también
Categorías
Más información sobre Surrogate Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!